def test_evalformat(self): ex = Experiment() ex.addOutputFile(test_out) ex.collectData() for (index, indexsplit) in ((index, indexsplit) for index in eval_index for indexsplit in eval_indexsplit): for (cols, fgs) in ((cols, fgs) for cols in self.test_cols for fgs in self.test_fgs): ev = IPETEvaluation(index=index, indexsplit=indexsplit) if cols is not None: for (ind_c, ind_a) in cols: col = IPETEvaluationColumn(**columns[ind_c]) if col_filters[ind_c] is not None: colfilter = IPETFilter(**col_filters[ind_c]) col.addFilter(colfilter) if ind_a: agg = Aggregation(**aggs[ind_c]) col.addAggregation(agg) ev.addColumn(col) if fgs is not None: for ind in fgs: fg = IPETFilterGroup(**filtergroups[ind]) if filters[ind] is not None: fgfilter = IPETFilter(**filters[ind]) fg.addFilter(fgfilter) ev.addFilterGroup(fg) try: tab_long, tab_agg = ev.evaluate(ex) except AttributeError as e: self.assertTrue(( cols is None or fgs is None ), "Either the number of columns or the number of filtergroups should be 0." ) continue self.assertEqual(type(tab_long), pd.DataFrame, "Type of long table wrong.") self.assertEqual(type(tab_agg), pd.DataFrame, "Type of aggregated table wrong.") # do not allow rowindex to be empty if indexsplit == 0: indexsplit = 1 rowindex_level = len(index.split()[:indexsplit]) columns_level = len(index.split()[indexsplit:]) self.assertEqual(tab_long.columns.nlevels, columns_level + 1, "Level of columnindex of long table wrong.") self.assertEqual(tab_agg.index.nlevels, columns_level + 1, "Level of rowindex of agg table wrong.") self.assertEqual(tab_long.index.nlevels, rowindex_level, "Level of rowindex of long table wrong.")
def createAndEvaluateColumn(self, col): ev = IPETEvaluation(index="A B C", indexsplit=3) ev.addColumn(col) ev.evaluate(self.helper) return ev