def _createStimulusSeries(self, electrodes): """ Return a list of pynwb stimulus series objects created from the ABF file contents. """ series = [] counter = 0 for file_index, abf in enumerate(self.abfs): stimulus_description = ABFConverter._getProtocolName(abf.protocol) scale_factor = self._getScaleFactor(abf, stimulus_description) for sweep in range(abf.sweepCount): cycle_id = createCycleID([file_index, sweep], total=self.totalSeriesCount) for channel in range(abf.channelCount): if not abf._dacSection.nWaveformEnable[channel]: continue abf.setSweep(sweep, channel=channel, absoluteTime=True) name, counter = createSeriesName("index", counter, total=self.totalSeriesCount) data = convertDataset(abf.sweepC * scale_factor, self.compression) conversion, unit = parseUnit(abf.sweepUnitsC) electrode = electrodes[channel] gain = abf._dacSection.fDACScaleFactor[channel] resolution = np.nan starting_time = self._calculateStartingTime(abf) rate = float(abf.dataRate) description = json.dumps({"cycle_id": cycle_id, "protocol": abf.protocol, "protocolPath": abf.protocolPath, "file": os.path.basename(abf.abfFilePath), "name": abf.dacNames[channel], "number": abf._dacSection.nDACNum[channel]}, sort_keys=True, indent=4) seriesClass = getStimulusSeriesClass(self._getClampMode(abf, channel)) stimulus = seriesClass(name=name, data=data, sweep_number=np.uint64(cycle_id), unit=unit, electrode=electrode, gain=gain, resolution=resolution, conversion=conversion, starting_time=starting_time, rate=rate, description=description, stimulus_description=stimulus_description) series.append(stimulus) return series
def _createAcquiredSeries(self, electrodes): """ Return a list of pynwb acquisition series objects created from the ABF file contents. """ series = [] counter = 0 for file_index, abf in enumerate(self.abfs): stimulus_description = ABFConverter._getProtocolName(abf.protocol) _, jsonSource = self._findSettingsEntry(abf) log.debug(f"Using JSON settings for {jsonSource}.") for sweep in range(abf.sweepCount): cycle_id = createCycleID([file_index, sweep], total=self.totalSeriesCount) for channel in range(abf.channelCount): adcName = abf.adcNames[channel] if not self.outputFeedbackChannel: if adcName in ABFConverter.adcNamesWithRealData: pass else: # feedback data, skip continue abf.setSweep(sweep, channel=channel, absoluteTime=True) name, counter = createSeriesName( "index", counter, total=self.totalSeriesCount) data = convertDataset(abf.sweepY, self.compression) conversion, unit = parseUnit(abf.sweepUnitsY) electrode = electrodes[channel] gain = abf._adcSection.fADCProgrammableGain[channel] resolution = np.nan starting_time = self._calculateStartingTime(abf) rate = float(abf.dataRate) description = json.dumps( { "cycle_id": cycle_id, "protocol": abf.protocol, "protocolPath": abf.protocolPath, "file": os.path.basename(abf.abfFilePath), "name": adcName, "number": abf._adcSection.nADCNum[channel] }, sort_keys=True, indent=4) clampMode = self._getClampMode(abf, channel) settings = self._getAmplifierSettings( abf, clampMode, adcName) seriesClass = getAcquiredSeriesClass(clampMode) if clampMode == V_CLAMP_MODE: acquistion_data = seriesClass( name=name, data=data, sweep_number=np.uint64(cycle_id), unit=unit, electrode=electrode, gain=gain, resolution=resolution, conversion=conversion, starting_time=starting_time, rate=rate, description=description, capacitance_slow=settings["capacitance_slow"], capacitance_fast=settings["capacitance_fast"], resistance_comp_correction=settings[ "resistance_comp_correction"], resistance_comp_bandwidth=settings[ "resistance_comp_bandwidth"], resistance_comp_prediction=settings[ "resistance_comp_prediction"], stimulus_description=stimulus_description, whole_cell_capacitance_comp=settings[ "whole_cell_capacitance_comp"], # noqa: E501 whole_cell_series_resistance_comp=settings[ "whole_cell_series_resistance_comp"] ) # noqa: E501 elif clampMode in (I_CLAMP_MODE, I0_CLAMP_MODE): acquistion_data = seriesClass( name=name, data=data, sweep_number=np.uint64(cycle_id), unit=unit, electrode=electrode, gain=gain, resolution=resolution, conversion=conversion, starting_time=starting_time, rate=rate, description=description, bias_current=settings["bias_current"], bridge_balance=settings["bridge_balance"], stimulus_description=stimulus_description, capacitance_compensation=settings[ "capacitance_compensation"]) else: raise ValueError( f"Unsupported clamp mode {clampMode}.") series.append(acquistion_data) return series
def _createAcquiredSeries(self, electrodes, groups): """ Return a list of pynwb acquisition series objects created from the DAT file contents. Parameters ---------- electrodes: list of pynwb.IntracellularElectrode groups: list of GroupRecord Returns ------- series: list of TimeSeries """ nwbSeries = [] counter = 0 for group in groups: for series in group: for sweep in series: cycle_id = createCycleID([ group.GroupCount, series.SeriesCount, sweep.SweepCount ], total=self.totalSeriesCount) for trace in sweep: name, counter = createSeriesName( "index", counter, total=self.totalSeriesCount) data = convertDataset(self.bundle.data[trace], self.compression) ampState = DatConverter._getAmplifierState( self.bundle, series, trace) if ampState: gain = ampState.Gain else: gain = np.nan conversion, unit = parseUnit(trace.YUnit) electrodeKey = DatConverter._generateElectrodeKey( trace) electrode = electrodes[ self.electrodeDict[electrodeKey]] resolution = np.nan starting_time = self._getStartingTime(sweep) rate = 1.0 / trace.XInterval description = json.dumps( { "cycle_id": cycle_id, "file": os.path.basename( self.bundle.file_name), "group_label": group.Label, "series_label": series.Label, "sweep_label": sweep.Label }, sort_keys=True, indent=4) clampMode = DatConverter._getClampMode( ampState, cycle_id, trace) seriesClass = getAcquiredSeriesClass(clampMode) stimulus_description = series.Label if clampMode == V_CLAMP_MODE: if ampState and ampState.RsOn: resistance_comp_correction = ampState.RsFraction whole_cell_series_resistance_comp = ampState.RsValue else: resistance_comp_correction = np.nan whole_cell_series_resistance_comp = np.nan whole_cell_capacitance_comp = np.nan resistance_comp_bandwidth = np.nan resistance_comp_prediction = np.nan if ampState and (ampState.AutoCFast or (ampState.CanCCFast and ampState.CCCFastOn)): # stored in two doubles for enhanced precision capacitance_fast = ampState.CFastAmp1 + ampState.CFastAmp2 else: capacitance_fast = np.nan if ampState and (ampState.AutoCSlow or (ampState.CanCCFast and not ampState.CCCFastOn)): capacitance_slow = ampState.CSlow else: capacitance_slow = np.nan acquistion_data = seriesClass( name=name, data=data, sweep_number=np.uint64(cycle_id), unit=unit, electrode=electrode, gain=gain, resolution=resolution, conversion=conversion, starting_time=starting_time, rate=rate, description=description, capacitance_slow=capacitance_slow, capacitance_fast=capacitance_fast, resistance_comp_correction= resistance_comp_correction, resistance_comp_bandwidth= resistance_comp_bandwidth, resistance_comp_prediction= resistance_comp_prediction, whole_cell_capacitance_comp= whole_cell_capacitance_comp, stimulus_description=stimulus_description, whole_cell_series_resistance_comp= whole_cell_series_resistance_comp ) # noqa: E501 elif clampMode == I_CLAMP_MODE: bias_current = trace.Holding if ampState and (ampState.AutoCFast or (ampState.CanCCFast and ampState.CCCFastOn)): # stored in two doubles for enhanced precision capacitance_compensation = ampState.CFastAmp1 + ampState.CFastAmp2 elif ampState and (ampState.AutoCSlow or (ampState.CanCCFast and not ampState.CCCFastOn)): capacitance_compensation = ampState.CSlow else: capacitance_compensation = np.nan if ampState: bridge_balance = 1.0 / ampState.GSeries else: bridge_balance = np.nan acquistion_data = seriesClass( name=name, data=data, sweep_number=np.uint64(cycle_id), unit=unit, electrode=electrode, gain=gain, resolution=resolution, conversion=conversion, starting_time=starting_time, rate=rate, description=description, bias_current=bias_current, bridge_balance=bridge_balance, stimulus_description=stimulus_description, capacitance_compensation= capacitance_compensation) else: raise ValueError( f"Unsupported clamp mode {clampMode}.") nwbSeries.append(acquistion_data) return nwbSeries