def test_unit_weighted(self): # unit weights should be the same as no weights data = np.array([5, 2, 6, 4], dtype=np.float64) weights = np.ones_like(data) rms = RMS.aggregate(data, 0, weights=weights) expected_rms = 4.5 self.assertAlmostEqual(rms, expected_rms)
def test_2d_weighted(self): # 2-dimensional input with weights data = np.array([[4, 7, 10, 8], [14, 16, 20, 8]], dtype=np.float64) weights = np.array([[1, 4, 3, 2], [2, 1, 1.5, 0.5]], dtype=np.float64) expected_rms = np.array([8.0, 16.0], dtype=np.float64) rms = RMS.aggregate(data, 1, weights=weights) self.assertArrayAlmostEqual(rms, expected_rms)
def test_1d(self): # 1-dimensional input. data = as_lazy_data(np.array([5, 2, 6, 4], dtype=np.float64), chunks=-1) rms = RMS.lazy_aggregate(data, 0) expected_rms = 4.5 self.assertAlmostEqual(rms, expected_rms)
def test_2d(self): # 2-dimensional input. data = as_lazy_data( np.array([[5, 2, 6, 4], [12, 4, 10, 8]], dtype=np.float64)) expected_rms = np.array([4.5, 9.0], dtype=np.float64) rms = RMS.lazy_aggregate(data, 1) self.assertArrayAlmostEqual(rms, expected_rms)
def test_1d_weighted(self): # 1-dimensional input with weights data = np.array([4, 7, 10, 8], dtype=np.float64) weights = np.array([1, 4, 3, 2], dtype=np.float64) expected_rms = 8.0 rms = RMS.aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_masked_weighted(self): # weights should work properly with masked arrays data = ma.array([4, 7, 18, 10, 11, 8], mask=[False, False, True, False, True, False], dtype=np.float64) weights = np.array([1, 4, 5, 3, 8, 2], dtype=np.float64) expected_rms = 8.0 rms = RMS.aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_2d(self): # 2-dimensional input. data = as_lazy_data(np.array([[5, 2, 6, 4], [12, 4, 10, 8]], dtype=np.float64), chunks=-1) expected_rms = np.array([4.5, 9.0], dtype=np.float64) rms = RMS.lazy_aggregate(data, 1) self.assertArrayAlmostEqual(rms, expected_rms)
def test_masked(self): # masked entries should be completely ignored data = ma.array([5, 10, 2, 11, 6, 4], mask=[False, True, False, True, False, False], dtype=np.float64) expected_rms = 4.5 rms = RMS.aggregate(data, 0) self.assertAlmostEqual(rms, expected_rms)
def test_masked(self): # Masked entries should be completely ignored. data = as_lazy_data(ma.array([5, 10, 2, 11, 6, 4], mask=[False, True, False, True, False, False], dtype=np.float64), chunks=-1) expected_rms = 4.5 rms = RMS.lazy_aggregate(data, 0) self.assertAlmostEqual(rms, expected_rms)
def test_1d_weighted(self): # 1-dimensional input with weights. data = as_lazy_data(np.array([4, 7, 10, 8], dtype=np.float64)) weights = np.array([1, 4, 3, 2], dtype=np.float64) expected_rms = 8.0 # https://github.com/dask/dask/issues/3846. with self.assertRaisesRegex(TypeError, "unexpected keyword argument"): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_unit_weighted(self): # Unit weights should be the same as no weights. data = as_lazy_data(np.array([5, 2, 6, 4], dtype=np.float64)) weights = np.ones_like(data) expected_rms = 4.5 # https://github.com/dask/dask/issues/3846. with self.assertRaisesRegex(TypeError, "unexpected keyword argument"): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_1d_weighted(self): # 1-dimensional input with weights. data = as_lazy_data(np.array([4, 7, 10, 8], dtype=np.float64), chunks=-1) weights = np.array([1, 4, 3, 2], dtype=np.float64) expected_rms = 8.0 # https://github.com/dask/dask/issues/3846. with self.assertRaisesRegexp(TypeError, 'unexpected keyword argument'): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_unit_weighted(self): # Unit weights should be the same as no weights. data = as_lazy_data(np.array([5, 2, 6, 4], dtype=np.float64), chunks=-1) weights = np.ones_like(data) expected_rms = 4.5 # https://github.com/dask/dask/issues/3846. with self.assertRaisesRegexp(TypeError, 'unexpected keyword argument'): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_masked(self): # Masked entries should be completely ignored. data = as_lazy_data(ma.array( [5, 10, 2, 11, 6, 4], mask=[False, True, False, True, False, False], dtype=np.float64), chunks=-1) expected_rms = 4.5 rms = RMS.lazy_aggregate(data, 0) self.assertAlmostEqual(rms, expected_rms)
def test_2d_weighted(self): # 2-dimensional input with weights. data = as_lazy_data( np.array([[4, 7, 10, 8], [14, 16, 20, 8]], dtype=np.float64)) weights = np.array([[1, 4, 3, 2], [2, 1, 1.5, 0.5]], dtype=np.float64) expected_rms = np.array([8.0, 16.0], dtype=np.float64) # https://github.com/dask/dask/issues/3846. with self.assertRaisesRegex(TypeError, "unexpected keyword argument"): rms = RMS.lazy_aggregate(data, 1, weights=weights) self.assertArrayAlmostEqual(rms, expected_rms)
def test_masked_weighted(self): # Weights should work properly with masked arrays, but currently don't # (see https://github.com/dask/dask/issues/3846). # For now, masked weights are simply not supported. data = as_lazy_data(ma.array([4, 7, 18, 10, 11, 8], mask=[False, False, True, False, True, False], dtype=np.float64)) weights = np.array([1, 4, 5, 3, 8, 2]) expected_rms = 8.0 with self.assertRaisesRegex(TypeError, 'unexpected keyword argument'): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_masked_weighted(self): # Weights should work properly with masked arrays, but currently don't # (see https://github.com/dask/dask/issues/3846). # For now, masked weights are simply not supported. data = as_lazy_data(ma.array([4, 7, 18, 10, 11, 8], mask=[False, False, True, False, True, False], dtype=np.float64), chunks=-1) weights = np.array([1, 4, 5, 3, 8, 2]) expected_rms = 8.0 with self.assertRaisesRegexp(TypeError, 'unexpected keyword argument'): rms = RMS.lazy_aggregate(data, 0, weights=weights) self.assertAlmostEqual(rms, expected_rms)
def test_1d(self): # 1-dimensional input data = np.array([5, 2, 6, 4], dtype=np.float64) rms = RMS.aggregate(data, 0) expected_rms = 4.5 self.assertAlmostEqual(rms, expected_rms)
def test(self): shape = () kwargs = dict() self.assertTupleEqual(RMS.aggregate_shape(**kwargs), shape) kwargs = dict(tom='jerry', calvin='hobbes') self.assertTupleEqual(RMS.aggregate_shape(**kwargs), shape)
def test(self): self.assertEqual(RMS.name(), 'root_mean_square')