Example #1
0
from collections import namedtuple
import glob

from iris import log

# Total guess based on the rule of thumb from this question:
# http://stackoverflow.com/questions/10565868/multi-layer-perceptron-mlp-architecture-criteria-for-choosing-number-of-hidde
NUM_HIDDEN = 21

# Sepal Length, Sepal Width, Petal Length and Petal Width == 4 features.
NUM_FEATURES = 4

# Iris-setosa, Iris-versicolor and Iris-virginica == 3
NUM_LABELS = 3

_logger = log.get_logger()

# Data structure used to keep track of important parameters used in training our
# model.
Topology = namedtuple("Topology", "x y t w_hidden b_hidden hidden w_out b_out")


def generate_weight(shape, name):
    """
    TF variable filled with random values which follow a normal distribution.

    Parameters
    ----------
    shape : 1-D Tensor or Array
        Corresponds to the shape parameter of tf.random_normal.
    name : str
Example #2
0
from collections import namedtuple
import glob

from iris import log

# Total guess based on the rule of thumb from this question:
# http://stackoverflow.com/questions/10565868/multi-layer-perceptron-mlp-architecture-criteria-for-choosing-number-of-hidde
NUM_HIDDEN = 21

# Sepal Length, Sepal Width, Petal Length and Petal Width == 4 features.
NUM_FEATURES = 4

# Iris-setosa, Iris-versicolor and Iris-virginica == 3
NUM_LABELS = 3

_logger = log.get_logger()

# Data structure used to keep track of important parameters used in training our
# model.
Topology = namedtuple(
    "Topology",
    "x y t w_hidden b_hidden hidden w_out b_out")


def generate_weight(shape, name):
    """
    TF variable filled with random values which follow a normal distribution.

    Parameters
    ----------
    shape : 1-D Tensor or Array