def testSetPlotContourPlain(self): cube = iris.load_cube(iris.sample_data_path('air_temp.pp')) plt.subplot(1,2,1) cc.setPlot(cube, "Contour", "Automatic", 15, False, None, None) plt.subplot(1,2,2) qplt.contour(cube, 15) plt.show()
def test_contour(self): qplt.contour(self._small()) self.check_graphic() qplt.contourf(self._small(), coords=["model_level_number", "grid_longitude"]) self.check_graphic()
def test_map(self): cube = self._slice(['grid_latitude', 'grid_longitude']) qplt.contour(cube) self.check_graphic() # check that the result of adding 360 to the data is *almost* identically the same result lon = cube.coord('grid_longitude') lon.points = lon.points + 360 qplt.contour(cube) self.check_graphic()
def simpletest(do_savefig=True, do_showfig=True, savefig_file='./puffer.png'): figure = make_puffersphere_figure() axes = make_puffersphere_axes() axes.stock_img() data = istk.global_pp() axes.coastlines() qplt.contour(data) draw_gridlines() #axes.coastlines() if do_savefig: save_figure_for_puffersphere(figure=plt.gcf(), filename=savefig_file) if do_showfig: plt.show()
def main(): dir='/data/local2/hador/ostia_reanalysis/' # ELD140 filename = dir + '*.nc' cube = iris.load_cube(filename,'sea_surface_temperature',callback=my_callback) #reads in data using a special callback, because it is a nasty netcdf file sst_mean = cube.collapsed('time', iris.analysis.MEAN) #average all 12 months together caribbean = iris.Constraint( longitude=lambda v: 260 <= v <= 320, latitude=lambda v: 0 <= v <= 40, name='sea_surface_temperature' ) caribbean_sst_mean = sst_mean.extract(caribbean) #extract the Caribbean region plt.figure() contour=qplt.contourf(caribbean_sst_mean, 50) contour=qplt.contour(caribbean_sst_mean, 5,colors='k') plt.clabel(contour, inline=1, fontsize=10,fmt='%1.1f' ) plt.gca().coastlines() #plt.gca().set_extent((-100,-60,0,40)) plt.show()
def testSetPlotContourLargeRange(self): cube = iris.load_cube(iris.sample_data_path('air_temp.pp')) plt.subplot(1,2,1) cc.setPlot(cube, "Contour", "brewer_Blues_09", 15, True, 400, 200) plt.subplot(1,2,2) contours = qplt.contour(cube, 15, cmap="brewer_Blues_09", vmin=200, vmax=400) plt.clabel(contours, inline=1, fontsize=8) plt.show()
def add_sea_floor(cube): """ Add a simple sea floor line from the cube mask. Parameters ---------- cube: iris.cube.Cube Input cube to use to produce the sea floor. """ land_cube = cube.copy() land_cube.data = np.ma.array(land_cube.data) mask = 1. * land_cube.data.mask if mask.shape == (): mask = np.zeros_like(land_cube.data) land_cube.data = np.ma.masked_where(mask == 0, mask) land_cube.data.mask = mask qplt.contour(land_cube, 2, cmap='Greys_r', rasterized=True)
def set_plot(cube, plot_type, cmap, num_contours, contour_labels, colorbar_range): """ Produces a plot object for the desired cube using quickplot. Args: * cube The cube to be plotted. * plot_type String holding the type of plot to be used. Choose from pcolormesh, Contour and Contourf. * cmap String representing the colormap to be used. Can be any of the Brewer Colormaps supported by Iris, or Automatic. * num_contour int holding the number of contours to be plotted. * contour_labels Boolean representing whether the contours on a Contour plot (not contourf) should be labeled. * colorbar_range Dictionary containing ints representing the max and min to which the colorbar will be set. """ # We unpack the colorbar_range dictionary colorbar_max = colorbar_range['max'] colorbar_min = colorbar_range['min'] # We obtain the levels used to define the contours. levels = get_levels(cube, colorbar_max, colorbar_min, num_contours) if plot_type == "Filled Contour": qplt.contourf(cube, num_contours, cmap=get_colormap(cmap), levels=levels, vmax=colorbar_max, vmin=colorbar_min) elif plot_type == "Contour": contours = qplt.contour(cube, num_contours, cmap=get_colormap(cmap), levels=levels, vmax=colorbar_max, vmin=colorbar_min) if contour_labels: plt.clabel(contours, inline=1, fontsize=8) else: qplt.pcolormesh(cube, cmap=get_colormap(cmap), vmax=colorbar_max, vmin=colorbar_min)
def plot_band_list(List, fname, lev, O3_bands, rates_in_bands): fig = plt.figure(figsize=(13, 18), dpi=100) index_grid = np.arange(9).reshape([3, 3]) gs = gridspec.GridSpec(4, 3) for i in range(3): for j in range(3): plt1 = plt.subplot(gs[i, j]) divs = List[index_grid[i, j]] qplt.contourf(divs, lev, cmap='bwr') qplt.contour(divs, levels=[0], colors='black') plt.title( str(rates_in_bands[index_grid[i, j]]) + ' events/year, O$_3$ Percentile ' + str(10 * index_grid[i, j]) + '-' + str(10 + 10 * index_grid[i, j])) plt1.set_yscale('log', basey=10, subsy=None) plt.ylim(5, 10000) plt1.invert_yaxis() plt.ylabel('Pressure (Pa)') plt.xlabel('Latitude') plt1 = plt.subplot(gs[3, 0]) divs = List[9] qplt.contourf(divs, lev, cmap='bwr') qplt.contour(divs, levels=[0], colors='black') plt.title( str(rates_in_bands[index_grid[i, j]]) + ' events/year, O$_3$ Percentile 90-100') plt1.set_yscale('log', basey=10, subsy=None) plt.ylim(5, 10000) plt1.invert_yaxis() plt.ylabel('Pressure (Pa)') plt.xlabel('Latitude') plt.tight_layout() plt.show() fig.savefig('./figures/' + fname, dpi=200) return
def plot_data(ax, z, t=360): ax = plt.subplot(111) assert z in zc.points assert t in time.points alt = iris.Constraint(**{zc.name(): z}) ts = iris.Constraint(time=t) w = data['W'].extract(alt & ts) v = data['V'].extract(alt & ts) u = data['U'].extract(alt & ts) qc = data['QC'].extract(alt & ts) c = qplt.contour(qc, coords=[xc.name(), yc.name()], colors='grey', levels=[ 1e-3, ], alpha=0.8, linewidths=2.5, title="") ax.set_title("") levels = np.linspace(-20, 20, 201) #cw = qplt.contourf(w, coords=[xc.name(), yc.name()], # cmap=plt.cm.RdBu, vmin=-20., vmax=20.) cw = ax.contourf(xc.points, yc.points, w.data, cmap=plt.cm.RdBu_r, levels=levels, extend="both") cb = plt.colorbar(cw, cax=cax, orientation='vertical') ax.set_title("") sl = 10 ax.quiver(xc.points[::sl], yc.points[::sl], u.data[::sl, ::sl], v.data[::sl, ::sl], units='inches', scale=75, headwidth=2) hour = t // 3600 minute = (t % 3600) / 60 ax.set_title("Time = %02d:%02d | Alt = %5d m" % (hour, minute, z), loc='left', fontsize=11)
def main(): """ """ cs = iris.Constraint(pressure=900) for i in xrange(1, 37): # Load the front variables cubes = files.load(datadir + '/xjjhq/xjjhq_fronts' + str(i).zfill(3) + '.pp') loc = convert.calc('front_locator_parameter_thw', cubes) m1 = convert.calc('thermal_front_parameter_thw', cubes) m2 = convert.calc('local_frontal_gradient_thw', cubes) # Apply the masking criteria mask = np.logical_or(m1.data < 4 * 0.3e-10, m2.data < 4 * 1.35e-5) loc.data = np.ma.masked_where(mask, loc.data) loc = cs.extract(loc) # Plot the locating variable qplt.contour(loc, [0], colors='k') plt.gca().coastlines() plt.gca().gridlines() plt.title('Fronts at 900 hPa, T+' + str(i) + ' hours') plt.savefig(plotdir + 'fronts' + str(i).zfill(3) + '.png')
def set_plot(cube, plot_type, cmap, num_contours, contour_labels, colorbar_range): """ Produces a plot object for the desired cube using quickplot. Args: * cube The cube to be plotted. * plot_type String holding the type of plot to be used. Choose from pcolormesh, Contour and Contourf. * cmap String representing the colormap to be used. Can be any of the Brewer Colormaps supported by Iris, or Automatic. * num_contour int holding the number of contours to be plotted. * contour_labels Boolean representing whether the contours on a Contour plot (not contourf) should be labeled. * colorbar_range Dictionary containing ints representing the max and min to which the colorbar will be set. """ # We unpack the colorbar_range dictionary colorbar_max = colorbar_range["max"] colorbar_min = colorbar_range["min"] # We obtain the levels used to define the contours. levels = get_levels(cube, colorbar_max, colorbar_min, num_contours) if plot_type == "Filled Contour": qplt.contourf(cube, num_contours, cmap=get_colormap(cmap), levels=levels, vmax=colorbar_max, vmin=colorbar_min) elif plot_type == "Contour": contours = qplt.contour( cube, num_contours, cmap=get_colormap(cmap), levels=levels, vmax=colorbar_max, vmin=colorbar_min ) if contour_labels: plt.clabel(contours, inline=1, fontsize=8) else: qplt.pcolormesh(cube, cmap=get_colormap(cmap), vmax=colorbar_max, vmin=colorbar_min)
def plot_data(ax, z, t=360): ax = plt.subplot(111) assert z in zc.points assert t in time.points alt = iris.Constraint(**{zc.name(): z}) ts = iris.Constraint(time=t) w = data['W'].extract(alt & ts) v = data['V'].extract(alt & ts) u = data['U'].extract(alt & ts) qc = data['QC'].extract(alt & ts) c = qplt.contour(qc, coords=[xc.name(), yc.name()], colors='grey', levels=[1e-3, ], alpha=0.8, linewidths=2.5, title="") ax.set_title("") levels = np.linspace(-20, 20, 201) #cw = qplt.contourf(w, coords=[xc.name(), yc.name()], # cmap=plt.cm.RdBu, vmin=-20., vmax=20.) cw = ax.contourf(xc.points, yc.points, w.data, cmap=plt.cm.RdBu_r, levels=levels, extend="both") cb = plt.colorbar(cw, cax=cax, orientation='vertical') ax.set_title("") sl = 10 ax.quiver(xc.points[::sl], yc.points[::sl], u.data[::sl, ::sl], v.data[::sl, ::sl], units='inches', scale=75, headwidth=2) hour = t // 3600 minute = (t % 3600) / 60 ax.set_title("Time = %02d:%02d | Alt = %5d m" % (hour, minute, z), loc='left', fontsize=11)
def test_xaxis_labels(self): qplt.contour(self.cube, coords=("str_coord", "bar")) self.assertPointsTickLabels("xaxis")
def test_contour(self): qplt.contour(self._small()) self.check_graphic() qplt.contourf(self._small(), coords=['model_level_number', 'grid_longitude']) self.check_graphic()
from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa import matplotlib.pyplot as plt import iris import iris.quickplot as qplt fname = iris.sample_data_path('air_temp.pp') temperature_cube = iris.load_cube(fname) # Add a contour, and put the result in a variable called contour. contour = qplt.contour(temperature_cube) # Add coastlines to the map created by contour. plt.gca().coastlines() # Add contour labels based on the contour we have just created. plt.clabel(contour, inline=False) plt.show()
def PV_along_trajectories(folder='IOP3/T42', time_string='20160922_12', name='', theta_min=24, no_of_trajs=10, plotnotmean=True): TrEn = load('/storage/silver/scenario/bn826011/WCB_outflow/Final/' + folder + '/inflow/' + time_string + '_3DTrajectoryEnsemble_new' + name) # load arbitrary set of 3D trajectories times = TrEn.times # get array containing pertinent times clpv = iris.load( '/storage/silver/NCAS-Weather/ben/nawdex/mi-ar482/' + time_string + '/prodm_op_gl-mn_' + time_string + '_c*_thsfcs.nc', 'ertel_potential_vorticity') clpv[-1] = iris.util.new_axis(clpv[-1], 'time') pvcube = clpv.concatenate_cube() # load full 3D PV fields for corresponding case # could restrict this to pertinent times to save processing time cldt = iris.load('/storage/silver/NCAS-Weather/ben/nawdex/mi-ar482/' + time_string + '/prodm_op_gl-mn_' + time_string + '_b*_thsfcs.nc', 'total_minus_adv_only_theta' ) # '_c*_thsfcs_5K.nc', 'ertel_potential_vorticity') cldt[-1] = iris.util.new_axis(cldt[-1], 'time') dtcube = cldt.concatenate_cube() # same for diabatic heating proxy delta_lat = np.mean(np.diff(pvcube.coord('latitude').points[:10])) / 2 # spacing of latitude grid delta_lon = np.mean(np.diff(pvcube.coord('longitude').points[:10])) / 2 # spacing of longitude grid trajectory_bin = [] for traj in TrEn: if abs(traj.data[0, 3] - traj.data[-1, 3]) > theta_min and min( traj.data[:, 3]) > 300: trajectory_bin.append(traj) # make a list of trajectories which ascend the most # NOTE: the data I have for some reason only goes down to 300K - possible drawback n = int(max(np.floor(len(trajectory_bin) / no_of_trajs), 1)) # interval of selection based on desired number of trajectories for figno, trajex in enumerate(trajectory_bin[::n]): lat = trajex.data[:, 1] lon = trajex.data[:, 0] theta = trajex.data[:, 3] pvs = [] dts = [] for i in range(len(times)): lat_constraint = iris.Constraint(latitude=lambda cell: lat[ i] - delta_lat < cell < lat[i] + delta_lat) lon_constraint = iris.Constraint(longitude=lambda cell: lon[ i] - delta_lon < cell < lon[i] + delta_lon) time_constraint = iris.Constraint(time=times[i]) pvs.append( pvcube.extract(lat_constraint & lon_constraint & time_constraint)) dts.append( dtcube.extract(lat_constraint & lon_constraint & time_constraint)) ### hack fix for points not being found ncl = [] tcl = [] try: for cube in pvs: if cube.ndim == 1: ncl.append(cube) elif cube.ndim == 2: ncl.append(cube[:, 0]) else: ncl.append(cube[:, 0, 0]) ### hack fix for points not being found for cube in dts: if cube.ndim == 1: tcl.append(cube) elif cube.ndim == 2: tcl.append(cube[:, 0]) else: tcl.append(cube[:, 0, 0]) ### hack fix for points not being found pvtrajcubes = iris.cube.CubeList(ncl) dttrajcubes = iris.cube.CubeList(tcl) pvmerge = pvtrajcubes.merge_cube() dtmerge = dttrajcubes.merge_cube() if plotnotmean: plt.figure(figsize=(12, 12)) plt.subplot(2, 2, 1) qplt.contourf(pvmerge, np.linspace(-3, 3, 25), cmap='RdBu_r') plt.plot(times, theta) plt.subplot(2, 2, 2) qplt.contourf(dtmerge, np.linspace(-25, 25, 26), cmap='RdBu_r') plt.plot(times, theta) plt.subplot(2, 1, 2) qplt.contour(pvcube[14, 10], [2]) plt.gca().coastlines() plt.plot(lon - 360, lat, linewidth=3) plt.savefig('PV_dtheta_trajectory_crosssection_' + str(figno) + '_' + time_string + '.png') plt.show() except AttributeError as e: print e else: if figno == 0: pvarray = np.array([pvmerge.data]) dtarray = np.array([dtmerge.data]) thetarray = np.array([theta]) # for the first profile, initialise a numpy array else: pvarray = np.append(pvarray, [pvmerge.data], axis=0) dtarray = np.append(dtarray, [dtmerge.data], axis=0) thetarray = np.append(thetarray, [theta], axis=0) if not plotnotmean: lts = len(times) pvmean = np.mean(pvarray, axis=0) dtmean = np.mean(dtarray, axis=0) thetamean = np.mean(thetarray, axis=0) # create mean fields along trajectories ytheta = np.repeat([np.linspace(300, 340, 17)], lts, axis=0) xtime = np.repeat([np.linspace(0, (lts - 1) * 6, lts)], 17, axis=0).T # create arrays for axes plt.figure(figsize=(12, 8)) plt.subplot(1, 2, 1) plt.contourf(xtime, ytheta, pvmean, np.linspace(-3, 3, 25), cmap='RdBu_r') plt.plot(np.linspace((lts - 1) * 6, 0, lts), thetamean) plt.title('Average PV along trajectory for > 20K ascent') plt.xlabel('time from start, hours') plt.ylabel('theta, kelvin') plt.subplot(1, 2, 2) plt.contourf(xtime, ytheta, dtmean, np.linspace(-25, 25, 26), cmap='RdBu_r') plt.plot(np.linspace((lts - 1) * 6, 0, lts), thetamean) plt.title('Average diabatic heating') plt.xlabel('time, hours') plt.savefig('PV_dtheta_trajectory_crosssection_mean_' + time_string + '.png') plt.show()
def test_xaxis_labels(self): qplt.contour(self.cube, coords=('str_coord', 'bar')) self.assertPointsTickLabels('xaxis')
def make_transect_contours( cfg, metadata, filename, ): """ Make a contour plot of the transect for an indivudual model. This tool loads the cube from the file, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image. Parameters ---------- cfg: dict the opened global config dictionairy, passed by ESMValTool. metadata: dict The metadata dictionairy for a specific model. filename: str The preprocessed model file. """ # Load cube and set up units cube = iris.load_cube(filename) cube = diagtools.bgc_units(cube, metadata['short_name']) cube = make_depth_safe(cube) # Load threshold/thresholds. plot_details = {} colours = [] thresholds = diagtools.load_thresholds(cfg, metadata) linewidths = [1 for thres in thresholds] linestyles = ['-' for thres in thresholds] cubes = make_cube_region_dict(cube) for region, cube in cubes.items(): for itr, thres in enumerate(thresholds): colour = diagtools.get_colour_from_cmap(itr, len(thresholds)) label = str(thres) + ' ' + str(cube.units) colours.append(colour) plot_details[thres] = { 'c': colour, 'lw': 1, 'ls': '-', 'label': label } qplt.contour(cube, thresholds, colors=colours, linewidths=linewidths, linestyles=linestyles, rasterized=True) # Determine y log scale. if determine_set_y_logscale(cfg, metadata): plt.axes().set_yscale('log') add_sea_floor(cube) # Add legend diagtools.add_legend_outside_right(plot_details, plt.gca(), column_width=0.08, loc='below') # Add title to plot title = ' '.join([ metadata['dataset'], metadata['long_name'], determine_transect_str(cube, region) ]) titlify(title) # Load image format extention image_extention = diagtools.get_image_format(cfg) # Determine image filename: if metadata['dataset'].find('MultiModel') > -1: path = diagtools.folder( cfg['plot_dir']) + os.path.basename(filename) path.replace('.nc', region + '_transect_contour' + image_extention) else: path = diagtools.get_image_path( cfg, metadata, suffix=region + 'transect_contour' + image_extention, ) # Saving files: if cfg['write_plots']: logger.info('Saving plots to %s', path) plt.savefig(path) plt.close()
def multi_model_contours( cfg, metadatas, ): """ Make a multi model comparison plot showing several transect contour plots. This tool loads several cubes from the files, checks that the units are sensible BGC units, checks for layers, adjusts the titles accordingly, determines the ultimate file name and format, then saves the image. Parameters ---------- cfg: dict the opened global config dictionairy, passed by ESMValTool. metadatas: dict The metadatas dictionairy for a specific model. """ #### # Load the data for each layer as a separate cube model_cubes = {} regions = {} thresholds = {} set_y_logscale = True for filename in sorted(metadatas): cube = iris.load_cube(filename) cube = diagtools.bgc_units(cube, metadatas[filename]['short_name']) cube = make_depth_safe(cube) cubes = make_cube_region_dict(cube) model_cubes[filename] = cubes for region in model_cubes[filename]: regions[region] = True # Determine y log scale. set_y_logscale = determine_set_y_logscale(cfg, metadatas[filename]) # Load threshold/thresholds. tmp_thresholds = diagtools.load_thresholds(cfg, metadatas[filename]) for threshold in tmp_thresholds: thresholds[threshold] = True # Load image format extention image_extention = diagtools.get_image_format(cfg) # Make a plot for each layer and each threshold for region, threshold in itertools.product(regions, thresholds): logger.info('plotting threshold: \t%s', threshold) title = '' plot_details = {} # Plot each file in the group for index, filename in enumerate(sorted(metadatas)): color = diagtools.get_colour_from_cmap(index, len(metadatas)) linewidth = 1. linestyle = '-' # Determine line style for MultiModel statistics: if 'MultiModel' in metadatas[filename]['dataset']: linewidth = 2. linestyle = ':' # Determine line style for Observations if metadatas[filename]['project'] in diagtools.get_obs_projects(): color = 'black' linewidth = 1.7 linestyle = '-' qplt.contour(model_cubes[filename][region], [ threshold, ], colors=[ color, ], linewidths=linewidth, linestyles=linestyle, rasterized=True) plot_details[filename] = { 'c': color, 'ls': linestyle, 'lw': linewidth, 'label': metadatas[filename]['dataset'] } if set_y_logscale: plt.axes().set_yscale('log') title = metadatas[filename]['long_name'] units = str(model_cubes[filename][region].units) add_sea_floor(model_cubes[filename][region]) # Add title, threshold, legend to plots title = ' '.join([ title, str(threshold), units, determine_transect_str(model_cubes[filename][region], region) ]) titlify(title) plt.legend(loc='best') # Saving files: if cfg['write_plots']: path = diagtools.get_image_path( cfg, metadatas[filename], prefix='MultipleModels', suffix='_'.join([ 'contour_tramsect', region, str(threshold) + image_extention ]), metadata_id_list=[ 'field', 'short_name', 'preprocessor', 'diagnostic', 'start_year', 'end_year' ], ) # Resize and add legend outside thew axes. plt.gcf().set_size_inches(9., 6.) diagtools.add_legend_outside_right(plot_details, plt.gca(), column_width=0.15) logger.info('Saving plots to %s', path) plt.savefig(path) plt.close()
def make_map_contour( cfg, metadata, filename, ): """ Make a simple contour map plot for an individual model. Parameters ---------- cfg: dict the opened global config dictionary, passed by ESMValTool. metadata: dict the metadata dictionary filename: str the preprocessed model file. """ # Load cube and set up units cube = iris.load_cube(filename) cube = diagtools.bgc_units(cube, metadata['short_name']) # Is this data is a multi-model dataset? multi_model = metadata['dataset'].find('MultiModel') > -1 # Make a dict of cubes for each layer. cubes = diagtools.make_cube_layer_dict(cube) # Load image format extention and threshold.thresholds. image_extention = diagtools.get_image_format(cfg) # Load threshold/thresholds. plot_details = {} colours = [] thresholds = diagtools.load_thresholds(cfg, metadata) for itr, thres in enumerate(thresholds): if len(thresholds) > 1: colour = plt.cm.jet(float(itr) / float(len(thresholds) - 1.)) else: colour = plt.cm.jet(0) label = str(thres) + ' ' + str(cube.units) colours.append(colour) plot_details[thres] = {'c': colour, 'lw': 1, 'ls': '-', 'label': label} linewidths = [1 for thres in thresholds] linestyles = ['-' for thres in thresholds] # Making plots for each layer for layer_index, (layer, cube_layer) in enumerate(cubes.items()): layer = str(layer) qplt.contour(cube_layer, thresholds, colors=colours, linewidths=linewidths, linestyles=linestyles, rasterized=True) try: plt.gca().coastlines() except AttributeError: logger.warning('Not able to add coastlines') try: plt.gca().add_feature(cartopy.feature.LAND, zorder=10, facecolor=[0.8, 0.8, 0.8]) except AttributeError: logger.warning('Not able to add coastlines') # Add legend diagtools.add_legend_outside_right(plot_details, plt.gca(), column_width=0.02, loc='below') # Add title to plot title = ' '.join([metadata['dataset'], metadata['long_name']]) depth_units = str(cube_layer.coords('depth')[0].units) if layer: title = '{} ({} {})'.format(title, layer, depth_units) plt.title(title) # Determine image filename: if multi_model: path = os.path.join(diagtools.folder(cfg['plot_dir']), os.path.basename(filename)) path = path.replace('.nc', '_contour_map_' + str(layer_index)) path = path + image_extention else: path = diagtools.get_image_path( cfg, metadata, suffix='_contour_map_' + str(layer_index) + image_extention, ) # Saving files: if cfg['write_plots']: logger.info('Saving plots to %s', path) plt.savefig(path) plt.close()
def multi_model_contours( cfg, metadata, ): """ Make a contour map showing several models. Parameters ---------- cfg: dict the opened global config dictionary, passed by ESMValTool. metadata: dict the metadata dictionary. """ #### # Load the data for each layer as a separate cube model_cubes = {} layers = {} for filename in sorted(metadata): cube = iris.load_cube(filename) cube = diagtools.bgc_units(cube, metadata[filename]['short_name']) cubes = diagtools.make_cube_layer_dict(cube) model_cubes[filename] = cubes for layer in cubes: layers[layer] = True # Load image format extention image_extention = diagtools.get_image_format(cfg) # Load threshold/thresholds. thresholds = diagtools.load_thresholds(cfg, metadata) # Make a plot for each layer and each threshold for layer, threshold in itertools.product(layers, thresholds): title = '' z_units = '' plot_details = {} cmap = plt.cm.get_cmap('jet') land_drawn = False # Plot each file in the group for index, filename in enumerate(sorted(metadata)): if len(metadata) > 1: color = cmap(index / (len(metadata) - 1.)) else: color = 'blue' linewidth = 1. linestyle = '-' # Determine line style for Observations if metadata[filename]['project'] in diagtools.get_obs_projects(): color = 'black' linewidth = 1.7 linestyle = '-' # Determine line style for MultiModel statistics: if 'MultiModel' in metadata[filename]['dataset']: color = 'black' linestyle = ':' linewidth = 1.4 cube = model_cubes[filename][layer] qplt.contour(cube, [ threshold, ], colors=[ color, ], linewidths=linewidth, linestyles=linestyle, rasterized=True) plot_details[filename] = { 'c': color, 'ls': linestyle, 'lw': linewidth, 'label': metadata[filename]['dataset'] } if not land_drawn: try: plt.gca().coastlines() except AttributeError: logger.warning('Not able to add coastlines') plt.gca().add_feature(cartopy.feature.LAND, zorder=10, facecolor=[0.8, 0.8, 0.8]) land_drawn = True title = metadata[filename]['long_name'] if layer != '': z_units = model_cubes[filename][layer].coords('depth')[0].units units = str(model_cubes[filename][layer].units) # Add title, threshold, legend to plots title = ' '.join([title, str(threshold), units]) if layer: title = ' '.join([title, '(', str(layer), str(z_units), ')']) plt.title(title) plt.legend(loc='best') # Saving files: if cfg['write_plots']: path = diagtools.get_image_path( cfg, metadata[filename], prefix='MultipleModels_', suffix='_'.join([ '_contour_map_', str(threshold), str(layer) + image_extention ]), metadata_id_list=[ 'field', 'short_name', 'preprocessor', 'diagnostic', 'start_year', 'end_year' ], ) # Resize and add legend outside thew axes. plt.gcf().set_size_inches(9., 6.) diagtools.add_legend_outside_right(plot_details, plt.gca(), column_width=0.15) logger.info('Saving plots to %s', path) plt.savefig(path) plt.close()
def make_map_extent_plots( cfg, metadata, filename, ): """ Make an extent map plot showing several times for an individual model. Parameters ---------- cfg: dict the opened global config dictionairy, passed by ESMValTool. metadata: dict The metadata dictionairy for a specific model. filename: str The preprocessed model file. """ # Load cube and set up units cube = iris.load_cube(filename) iris.coord_categorisation.add_year(cube, 'time') cube = diagtools.bgc_units(cube, metadata['short_name']) cube = agregate_by_season(cube) # Is this data is a multi-model dataset? multi_model = metadata['dataset'].find('MultiModel') > -1 # Make a dict of cubes for each layer. cubes = diagtools.make_cube_layer_dict(cube) # Load image format extention image_extention = diagtools.get_image_format(cfg) # Load threshold, pole and season threshold = float(cfg['threshold']) pole = get_pole(cube) season = get_season(cube) # Start making figure for layer_index, (layer, cube_layer) in enumerate(cubes.items()): fig = plt.figure() fig.set_size_inches(7, 7) if pole == 'North': # North Hemisphere projection = cartopy.crs.NorthPolarStereo() ax1 = plt.subplot(111, projection=projection) ax1.set_extent([-180, 180, 50, 90], cartopy.crs.PlateCarree()) if pole == 'South': # South Hemisphere projection = cartopy.crs.SouthPolarStereo() ax1 = plt.subplot(111, projection=projection) ax1.set_extent([-180, 180, -90, -50], cartopy.crs.PlateCarree()) try: ax1.add_feature(cartopy.feature.LAND, zorder=10, facecolor=[0.8, 0.8, 0.8]) except ConnectionRefusedError: logger.error('Cartopy was unable add coastlines due to a ' 'connection error.') ax1.gridlines(linewidth=0.5, color='black', zorder=20, alpha=0.5, linestyle='--') try: plt.gca().coastlines() except AttributeError: logger.warning('make_polar_map: Not able to add coastlines') times = np.array(cube.coord('time').points.astype(float)) plot_desc = {} for time_itr, time in enumerate(times): cube = cube_layer[time_itr] line_width = 1 color = plt.cm.jet(float(time_itr) / float(len(times))) label = get_year(cube) plot_desc[time] = { 'label': label, 'c': [ color, ], 'lw': [ line_width, ], 'ls': [ '-', ] } layer = str(layer) qplt.contour(cube, [ threshold, ], colors=plot_desc[time]['c'], linewidths=plot_desc[time]['lw'], linestyles=plot_desc[time]['ls'], rasterized=True) # Add legend legend_size = len(plot_desc) + 1 ncols = int(legend_size / 25) + 1 ax1.set_position([ ax1.get_position().x0, ax1.get_position().y0, ax1.get_position().width * (1. - 0.1 * ncols), ax1.get_position().height ]) fig.set_size_inches(7 + ncols * 1.2, 7) # Construct dummy plots. for i in sorted(plot_desc): plt.plot( [], [], c=plot_desc[i]['c'][0], lw=plot_desc[i]['lw'][0], ls=plot_desc[i]['ls'][0], label=plot_desc[i]['label'], ) legd = ax1.legend(loc='center left', ncol=ncols, prop={'size': 10}, bbox_to_anchor=(1., 0.5)) legd.draw_frame(False) legd.get_frame().set_alpha(0.) # Add title to plot title = ' '.join([ metadata['dataset'], ]) if layer: title = ' '.join([ title, '(', layer, str(cube_layer.coords('depth')[0].units), ')' ]) plt.title(title) # Determine image filename: suffix = '_'.join(['ortho_map', pole, season, str(layer_index)]) suffix = suffix.replace(' ', '') + image_extention if multi_model: path = diagtools.folder(cfg['plot_dir']) path = path + os.path.basename(filename) path = path.replace('.nc', suffix) else: path = diagtools.get_image_path( cfg, metadata, suffix=suffix, ) # Saving files: if cfg['write_plots']: logger.info('Saving plots to %s', path) plt.savefig(path) plt.close()
def permafrost_area(soiltemp, airtemp, landfrac, run): """Calculate the permafrost area and make a plot.""" # Define parameters of the test to calculate the existence of permafrost thresh_temperature = 273.2 frozen_months = 24 prop_months_frozen = 0.5 # frozen for at least half of the simulation # make a mask of land fraction over non iced areas and extract northern # latitudes nonice = get_nonice_mask(run) mask = iris.analysis.maths.multiply(nonice, landfrac) mask = mask.extract(iris.Constraint(latitude=lambda cell: cell > 0)) # extract northern high latitudes [and deeepst soil level] soiltemp = soiltemp.extract(iris.Constraint(depth=2.0)) # from 1m to 3m # Make an aggregator to define the permafrost extent # I dont really understand this but it works frozen_count = iris.analysis.Aggregator('frozen_count', num_frozen, units_func=lambda units: 1) # Calculate the permafrost locations pf_periods = soiltemp.collapsed('time', frozen_count, threshold=thresh_temperature, frozen_length=frozen_months) tot_time = len(soiltemp.coord('time').points) pf_periods = pf_periods / float(tot_time) pf_periods.rename('Fraction of months layer 4 (-1m to -3m) soil is frozen') # mask out non permafrost points, sea points and ice points pf_periods.data = np.ma.masked_less(pf_periods.data, prop_months_frozen) # set all non-masked values to 1 for area calculation # (may be a better way of doing this but I'm not sure what it is) pf_periods = pf_periods / pf_periods # mask for land area also pf_periods = pf_periods * mask # calculate the area of permafrost # Generate area-weights array. This method requires bounds on lat/lon # coords, add some in sensible locations using the "guess_bounds" # method. for coord in ['latitude', 'longitude']: if not pf_periods.coord(coord).has_bounds(): pf_periods.coord(coord).guess_bounds() grid_areas = iris.analysis.cartography.area_weights(pf_periods) # calculate the areas not masked in pf_periods pf_area = pf_periods.collapsed(['longitude', 'latitude'], iris.analysis.SUM, weights=grid_areas).data # what is the area where the temperature is less than 0 degrees C? airtemp = airtemp.collapsed('time', iris.analysis.MEAN) # if more than 2 dims, select the ground level if airtemp.ndim > 2: airtemp = airtemp[0] airtemp_below_zero = np.where(airtemp.data < 273.2, 1, 0) airtemp_area = np.sum(airtemp_below_zero * grid_areas) pf_prop = pf_area / airtemp_area pf_area = pf_area / 1e12 # Figure Permafrost extent north america plt.figure(figsize=(8, 8)) ax = plt.axes(projection=ccrs.Orthographic(central_longitude=-80.0, central_latitude=60.0)) qplt.pcolormesh(pf_periods) ax.gridlines() ax.coastlines() levels = [thresh_temperature] qplt.contour(airtemp, levels, colors='k', linewidths=3) plt.title('Permafrost extent & zero degree isotherm ({})'.format( run['runid'])) plt.savefig('pf_extent_north_america_' + run['runid'] + '.png') # Figure Permafrost extent asia plt.figure(figsize=(8, 8)) ax = plt.axes(projection=ccrs.Orthographic(central_longitude=100.0, central_latitude=50.0)) qplt.pcolormesh(pf_periods) ax.gridlines() ax.coastlines() levels = [thresh_temperature] qplt.contour(airtemp, levels, colors='k', linewidths=3) plt.title('Permafrost extent & zero degree isotherm ({})'.format( run['runid'])) plt.savefig('pf_extent_asia_' + run['runid'] + '.png') # defining metrics for return up to top level metrics = { 'permafrost area': pf_area, 'fraction area permafrost over zerodeg': pf_prop, } return metrics