def compute(self): all_data = self.getData('data') xml_header = self.getData('ISMRMRDHeader') header = ismrmrd.xsd.CreateFromDocument(xml_header) enc = header.encoding[0] #Parallel imaging factor acc_factor = 1 if enc.parallelImaging: acc_factor = enc.parallelImaging.accelerationFactor.kspace_encoding_step_1 # Coil combination print "Calculating coil images and CSM" coil_images = transform.transform_kspace_to_image(np.squeeze(np.mean(all_data,0)),(1,2)) (csm,rho) = coils.calculate_csm_walsh(coil_images) csm_ss = np.sum(csm * np.conj(csm),0) csm_ss = csm_ss + 1.0*(csm_ss < np.spacing(1)).astype('float32') if acc_factor > 1: coil_data = np.squeeze(np.mean(all_data,0)) if self.getVal('Parallel Imaging Method') == 0: (unmix,gmap) = grappa.calculate_grappa_unmixing(coil_data, acc_factor,csm=csm) elif self.getVal('Parallel Imaging Method') == 1: (unmix,gmap) = sense.calculate_sense_unmixing(acc_factor,csm) else: raise Exception('Unknown parallel imaging method') recon = np.zeros((all_data.shape[-4],all_data.shape[-2],all_data.shape[-1]), dtype=np.complex64) for r in range(0,all_data.shape[-4]): recon_data = transform.transform_kspace_to_image(np.squeeze(all_data[r,:,:,:]),(1,2))*np.sqrt(acc_factor) if acc_factor > 1: recon[r,:,:] = np.sum(unmix * recon_data,0) else: recon[r,:,:] = np.sum(np.conj(csm) * recon_data,0) print "Reconstruction done" self.setData('recon', recon) if acc_factor == 1: gmap = np.ones((all_data.shape[-2],all_data.shape[-1]),dtype=np.float32) self.setData('gmap',gmap) return 0
def view(image, load_opts=None, is_raw=None, is_line=None, prep=None, fft=False, fft_axes=None, fftshift=None, avg_axis=None, coil_combine_axis=None, coil_combine_method='walsh', coil_combine_opts=None, is_imspace=False, mag=None, phase=False, log=False, imshow_opts={'cmap': 'gray'}, montage_axis=None, montage_opts={'padding_width': 2}, movie_axis=None, movie_interval=50, movie_repeat=True, save_npy=False, debug_level=logging.DEBUG, test_run=False): '''Image viewer to quickly inspect data. Parameters ---------- image : str or array_like Name of the file including the file extension or numpy array. load_opts : dict, optional Options to pass to data loader. is_raw : bool, optional Inform if data is raw. Will attempt to guess from extension. is_line : bool, optional Whether or not this is a line plot (as opposed to image). prep : callable, optional Lambda function to process the data before it's displayed. fft : bool, optional Whether or not to perform n-dimensional FFT of data. fft_axes : tuple, optional Axis to perform FFT over, determines dimension of n-dim FFT. fftshift : bool, optional Whether or not to perform fftshift. Defaults to True if fft. avg_axis : int, optional Take average over given set of axes. coil_combine_axis : int, optional Which axis to perform coil combination over. coil_combine_method : {'walsh', 'inati', 'pca'}, optional Method to use to combine coils. coil_combine_opts : dict, optional Options to pass to the coil combine method. is_imspace : bool, optional Whether or not the data is in image space. For coil combine. mag : bool, optional View magnitude image. Defaults to True if data is complex. phase : bool, optional View phase image. log : bool, optional View log of magnitude data. Defaults to False. imshow_opts : dict, optional Options to pass to imshow. Defaults to { 'cmap'='gray' }. montage_axis : int, optional Which axis is the number of images to be shown. montage_opts : dict, optional Additional options to pass to the skimage.util.montage. movie_axis : int, optional Which axis is the number of frames of the movie. movie_interval : int, optional Interval to give to animation frames. movie_repeat : bool, optional Whether or not to put movie on endless loop. save_npy : bool, optional Whether or not to save the output as npy file. debug_level : logging_level, optional Level of verbosity. See logging module. test_run : bool, optional Doesn't show figure, returns debug object. Mostly for testing. Returns ------- data : array_like Image data shown in plot. dict, optional All local variables when test_run=True. Raises ------ Exception When file type is not in ['dat', 'npy', 'mat', 'h5']. ValueError When coil combine requested, but fft_axes not set. AssertionError When Walsh coil combine requested but len(fft_axes) =/= 2. ValueError When there are too many dimension to display. ''' # Set up logging... logging.basicConfig(format='%(levelname)s: %(message)s', level=debug_level) # Add some default empty params if load_opts is None: load_opts = dict() if coil_combine_opts is None: coil_combine_opts = dict() # If the user wants to look at numpy matrix, recognize that # filename is the matrix: if isinstance(image, np.ndarray): logging.info('Image is a numpy array!') data = image elif isinstance(image, list): # If user sends a list, try casting to numpy array logging.info('Image is a list, trying to cast as numpy array...') data = np.array(image) else: # Find the file extension ext = pathlib.Path(image).suffix # If the user says data is raw, then trust the user if is_raw or (ext == '.dat'): data = load_raw(image, **load_opts) elif ext == '.npy': data = np.load(image, **load_opts) elif ext == '.mat': # Help out the user a little bit... If only one # nontrivial key is found then go ahead and assume it's # that one data = None if not list(load_opts): keys = mat_keys(image, no_print=True) if len(keys) == 1: logging.info(('No key supplied, but one key for' ' mat dictionary found (%s), using' ' it...'), keys[0]) data = load_mat(image, key=keys[0]) # If we can't help the user out, just load it as normal if data is None: data = load_mat(image, **load_opts) elif ext == '.h5': data = load_ismrmrd(image, **load_opts) else: raise Exception('File type %s not understood!' % ext) # Right off the bat, remove singleton dimensions if 1 in data.shape: logging.info('Current shape %s: Removing singleton dimensions...', str(data.shape)) data = data.squeeze() logging.info('New shape: %s', str(data.shape)) # Average out over any axis specified if avg_axis is not None: data = np.mean(data, axis=avg_axis) # Let's collapse the coil dimension using the specified algorithm if coil_combine_axis is not None: # We'll need to know the fft_axes if the data is in kspace if not is_imspace and fft_axes is None: msg = ('fft_axes required to do coil combination of ' 'k-space data!') raise ValueError(msg) if coil_combine_method == 'walsh': msg = 'Walsh only works with 2D images!' assert len(fft_axes) == 2, msg logging.info('Performing Walsh 2d coil combine across axis %d...', list(range(data.ndim))[coil_combine_axis]) # We need to do this is image domain... if not is_imspace: fft_data = np.fft.ifftshift(np.fft.ifftn(data, axes=fft_axes), axes=fft_axes) else: fft_data = data # walsh expects (coil,y,x) fft_data = np.moveaxis(fft_data, coil_combine_axis, 0) csm_walsh, _ = calculate_csm_walsh(fft_data, **coil_combine_opts) fft_data = np.sum(csm_walsh * np.conj(fft_data), axis=0, keepdims=True) # Sum kept the axis where coil used to be so we can rely # on fft_axes to be correct when do the FT back to kspace fft_data = np.moveaxis(fft_data, 0, coil_combine_axis) # Now move back to kspace and squeeze the dangling axis if not is_imspace: data = np.fft.fftn(np.fft.fftshift(fft_data, axes=fft_axes), axes=fft_axes).squeeze() else: data = fft_data.squeeze() elif coil_combine_method == 'inati': logging.info('Performing Inati coil combine across axis %d...', list(range(data.ndim))[coil_combine_axis]) # Put things into image space if we need to if not is_imspace: fft_data = np.fft.ifftshift(np.fft.ifftn(data, axes=fft_axes), axes=fft_axes) else: fft_data = data # inati expects (coil,z,y,x) fft_data = np.moveaxis(fft_data, coil_combine_axis, 0) _, fft_data = calculate_csm_inati_iter(fft_data, **coil_combine_opts) # calculate_csm_inati_iter got rid of the axis, so we # need to add it back in so we can use the same fft_axes fft_data = np.expand_dims(fft_data, coil_combine_axis) # Now move back to kspace and squeeze the dangling axis if not is_imspace: data = np.fft.fftn(np.fft.fftshift(fft_data, axes=fft_axes), axes=fft_axes).squeeze() else: data = fft_data.squeeze() elif coil_combine_method == 'pca': logging.info('Performing PCA coil combine across axis %d...', list(range(data.ndim))[coil_combine_axis]) # We don't actually care whether we do this is in kspace # or imspace if not is_imspace: logging.info(('PCA doesn\'t care that image might not be in' 'image space.')) if 'n_components' not in coil_combine_opts: n_components = int(data.shape[coil_combine_axis] / 2) logging.info('Deciding to use %d components.', n_components) coil_combine_opts['n_components'] = n_components data = coil_pca(data, coil_dim=coil_combine_axis, **coil_combine_opts) else: logging.error('Coil combination method "%s" not supported!', coil_combine_method) logging.warning('Attempting to skip coil combination!') # Show the image. Let's also try to help the user out again. If # we have 3 dimensions, one of them is probably a montage or a # movie. If the user didn't tell us anything, it's going to # crash anyway, so let's try guessing what's going on... if (data.ndim > 2) and (movie_axis is None) and (montage_axis is None): logging.info('Data has %d dimensions!', data.ndim) # We will always assume that inplane resolution is larger # than the movie/montage dimensions # If only 3 dims, then one must be montage/movie dimension if data.ndim == 3: # assume inplane resolution larger than movie/montage dim min_axis = np.argmin(data.shape) # Assume 10 is the most we'll want to montage if data.shape[min_axis] < 10: logging.info('Guessing axis %d is montage...', min_axis) montage_axis = min_axis else: logging.info('Guessing axis %d is movie...', min_axis) movie_axis = min_axis # If 4 dims, guess smaller dim will be montage, larger guess # movie elif data.ndim == 4: montage_axis = np.argmin(data.shape) # Consider the 4th dimension as the color channel in # skimontage montage_opts['multichannel'] = True # Montage will go through skimontage which will remove the # montage_axis dimension, so find the movie dimension # without the montage dimension: tmp = np.delete(data.shape[:], montage_axis) movie_axis = np.argmin(tmp) logging.info(('Guessing axis %d is montage, axis %d will be ' 'movie...'), montage_axis, movie_axis) # fft and fftshift will require fft_axes. If the user didn't # give us axes, let's try to guess them: if (fft or (fftshift is not False)) and (fft_axes is None): all_axes = list(range(data.ndim)) if (montage_axis is not None) and (movie_axis is not None): fft_axes = np.delete( all_axes, [all_axes[montage_axis], all_axes[movie_axis]]) elif montage_axis is not None: fft_axes = np.delete(all_axes, all_axes[montage_axis]) elif movie_axis is not None: fft_axes = np.delete(all_axes, all_axes[movie_axis]) else: fft_axes = all_axes logging.info('User did not supply fft_axes, guessing %s...', str(fft_axes)) # Perform n-dim FFT across fft_axes if desired if fft: data = np.fft.fftn(data, axes=fft_axes) # Perform fftshift if desired. If the user does not specify # fftshift, if fft is performed, then fftshift will also be # performed. To override this behavior, simply supply # fftshift=False in the arguments. Similarly, to force fftshift # even if no fft was performed, supply fftshift=True. if fft and (fftshift is None): fftshift = True elif fftshift is None: fftshift = False if fftshift: data = np.fft.fftshift(data, axes=fft_axes) # Take absolute value to view if necessary, must take abs before # log if np.iscomplexobj(data) or (mag is True) or (log is True): data = np.abs(data) if log: # Don't take log of 0! data[data == 0] = np.nan data = np.log(data) # If we asked for phase, let's work out how we'll do that if phase and ((mag is None) or (mag is True)): # TODO: figure out which axis to concatenate the phase onto data = np.concatenate((data, np.angle(data)), axis=fft_axes[-1]) elif phase and (mag is False): data = np.angle(data) # Run any processing before imshow if callable(prep): data = prep(data) # If it's just a line plot, skip all the montage, movie stuff if is_line: montage_axis = None movie_axis = None if montage_axis is not None: # We can deal with 4 dimensions if we allow multichannel if data.ndim == 4 and 'multichannel' not in montage_opts: montage_opts['multichannel'] = True # When we move the movie_axis to the end, we will need to # adjust the montage axis in case we displace it. We # need to move it to the end so skimontage will consider # it the multichannel data = np.moveaxis(data, movie_axis, -1) if movie_axis < montage_axis: montage_axis -= 1 # Put the montage axis in front data = np.moveaxis(data, montage_axis, 0) try: data = skimontage(data, **montage_opts) except ValueError: # Multichannel might be erronously set montage_opts['multichannel'] = False data = skimontage(data, **montage_opts) if data.ndim == 3: # If we had 4 dimensions, we just lost one, so now we # need to know where the movie dimension went off to... if movie_axis > montage_axis: movie_axis -= 1 # Move the movie axis back, it's no longer the color # channel data = np.moveaxis(data, -1, movie_axis) if movie_axis is not None: fig = plt.figure() data = np.moveaxis(data, movie_axis, -1) im = plt.imshow(data[..., 0], **imshow_opts) def updatefig(frame): '''Animation function for figure.''' im.set_array(data[..., frame]) return im, # pylint: disable=R1707 _ani = animation.FuncAnimation(fig, updatefig, frames=data.shape[-1], interval=movie_interval, blit=True, repeat=movie_repeat) if not test_run: plt.show() else: if data.ndim == 1 or is_line: plt.plot(data) elif data.ndim == 2: # Just a regular old 2d image... plt.imshow(np.nan_to_num(data), **imshow_opts) else: raise ValueError('%d is too many dimensions!' % data.ndim) if not test_run: plt.show() # Save what we looked at if desired if save_npy: if ext: filename = image else: filename = 'view-output' np.save(filename, data) # If we're testing, return all the local vars if test_run: return locals() return data
# -*- coding: utf-8 -*- #%% #Basic setup import numpy as np from ismrmrdtools import simulation, coils, show matrix_size = 256 csm = simulation.generate_birdcage_sensitivities(matrix_size) phan = simulation.phantom(matrix_size) coil_images = np.tile(phan, (8, 1, 1)) * csm show.imshow(abs(coil_images), tile_shape=(4, 2)) (csm_est, rho) = coils.calculate_csm_walsh(coil_images) combined_image = np.sum(csm_est * coil_images, axis=0) show.imshow(abs(csm_est), tile_shape=(4, 2), scale=(0, 1)) show.imshow(abs(combined_image), scale=(0, 1))
# DON'T DO THIS, STUPID! # # phase-cycle correction # Imag = np.abs(I[cc, ...]) # Iphase = np.angle(I[cc, ...]) - np.tile(pcs/2, (N, N, 1)).T # I[cc, ...] = Imag*np.exp(1j*Iphase) I *= csm_mag # view(I.transpose((2, 3, 0, 1))) # Estimate the sensitivity maps from coil images recons = np.zeros((ncoils, N, N), dtype='complex') for cc in range(ncoils): recons[cc, ...] = gs_recon(I[cc, ...], pc_axis=0) thresh = threshold_li(np.abs(recons)) mask = np.abs(recons) > thresh csm_est, _ = calculate_csm_walsh(recons) # This doesn't work as well, still alright, but we knew this about # inati # csm_est, _ = calculate_csm_inati_iter(recons) # # Do the other way: estimate coil sensitivities from phase-cycle # csms = np.zeros((npcs, ncoils, N, N)) # for ii in range(npcs): # csms[ii, ...], _ = calculate_csm_walsh(I[:, ii, ...]) # csm_est = np.mean(csms, axis=0) # # Look at residual phase # view(np.rad2deg((np.angle(csm)*mask - ( # np.angle(csm_est) - np.pi/2)*mask)))
def process(self, acq, data,*args): if self.buffer is None: # Matrix size eNx = self.enc.encodedSpace.matrixSize.x eNy = self.enc.encodedSpace.matrixSize.y eNz = self.enc.encodedSpace.matrixSize.z rNx = self.enc.reconSpace.matrixSize.x rNy = self.enc.reconSpace.matrixSize.y rNz = self.enc.reconSpace.matrixSize.z # Field of View eFOVx = self.enc.encodedSpace.fieldOfView_mm.x eFOVy = self.enc.encodedSpace.fieldOfView_mm.y eFOVz = self.enc.encodedSpace.fieldOfView_mm.z rFOVx = self.enc.reconSpace.fieldOfView_mm.x rFOVy = self.enc.reconSpace.fieldOfView_mm.y rFOVz = self.enc.reconSpace.fieldOfView_mm.z channels = acq.active_channels if data.shape[1] != rNx: raise("Error, Recon gadget expects data to be on correct matrix size in RO direction") if (rNz != 1): rasie("Error Recon Gadget only supports 2D for now") self.buffer = np.zeros((channels, rNy, rNx),dtype=np.complex64) self.samp_mask = np.zeros(self.buffer.shape[1:]) self.header_proto = ismrmrd.ImageHeader() self.header_proto.matrix_size[0] = rNx self.header_proto.matrix_size[1] = rNy self.header_proto.matrix_size[2] = rNz self.header_proto.field_of_view[0] = rFOVx self.header_proto.field_of_view[1] = rFOVy self.header_proto.field_of_view[0] = rFOVz #Now put data in buffer line_offset = self.buffer.shape[1]/2 - self.enc.encodingLimits.kspace_encoding_step_1.center self.buffer[:,acq.idx.kspace_encode_step_1+line_offset,:] = data self.samp_mask[acq.idx.kspace_encode_step_1+line_offset,:] = 1 #If last scan in buffer, do FFT and fill image header if acq.isFlagSet(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1) or acq.isFlagSet(ismrmrd.ACQ_LAST_IN_SLICE): img_head = copy.deepcopy(self.header_proto) img_head.position = acq.position img_head.read_dir = acq.read_dir img_head.phase_dir = acq.phase_dir img_head.slice_dir = acq.slice_dir img_head.patient_table_position = acq.patient_table_position img_head.acquisition_time_stamp = acq.acquisition_time_stamp img_head.slice = acq.idx.slice img_head.channels = 1 scale = self.samp_mask.size/(1.0*np.sum(self.samp_mask[:])); #We have not yet calculated unmixing coefficients if self.unmix is None: self.calib_buffer.append((img_head,self.buffer.copy())) self.buffer[:] = 0 self.samp_mask[:] = 0 if len(self.calib_buffer) >= self.calib_frames: cal_data = np.zeros(self.calib_buffer[0][1].shape, dtype=np.complex64) for c in self.calib_buffer: cal_data = cal_data + c[1] mask = np.squeeze(np.sum(np.abs(cal_data),0)) mask = np.ones(mask.shape)*(np.abs(mask)>0.0) target = None #cal_data[0:8,:,:] coil_images = transform.transform_kspace_to_image(cal_data,dim=(1,2)) (csm,rho) = coils.calculate_csm_walsh(coil_images) if self.method == 'grappa': self.unmix, self.gmap = grappa.calculate_grappa_unmixing(cal_data, self.acc_factor, data_mask=mask, kernel_size=(4,5), csm=csm) elif self.method == 'sense': self.unmix, self.gmap = sense.calculate_sense_unmixing(self.acc_factor, csm) else: raise Exception('Unknown parallel imaging method: ' + str(self.method)) for c in self.calib_buffer: recon = transform.transform_kspace_to_image(c[1],dim=(1,2))*np.sqrt(scale) recon = np.squeeze(np.sum(recon * self.unmix,0)) self.put_next(c[0], recon,*args) return 0 if self.unmix is None: raise Exception("We should never reach this point without unmixing coefficients") recon = transform.transform_kspace_to_image(self.buffer,dim=(1,2))*np.sqrt(scale) recon = np.squeeze(np.sum(recon * self.unmix,0)) self.buffer[:] = 0 self.samp_mask[:] = 0 self.put_next(img_head,recon,*args) return 0
def process(self, acq, data, *args): if self.buffer is None: # Matrix size eNx = self.enc.encodedSpace.matrixSize.x eNy = self.enc.encodedSpace.matrixSize.y eNz = self.enc.encodedSpace.matrixSize.z rNx = self.enc.reconSpace.matrixSize.x rNy = self.enc.reconSpace.matrixSize.y rNz = self.enc.reconSpace.matrixSize.z # Field of View eFOVx = self.enc.encodedSpace.fieldOfView_mm.x eFOVy = self.enc.encodedSpace.fieldOfView_mm.y eFOVz = self.enc.encodedSpace.fieldOfView_mm.z rFOVx = self.enc.reconSpace.fieldOfView_mm.x rFOVy = self.enc.reconSpace.fieldOfView_mm.y rFOVz = self.enc.reconSpace.fieldOfView_mm.z channels = acq.active_channels if data.shape[1] != rNx: raise ( "Error, Recon gadget expects data to be on correct matrix size in RO direction" ) if (rNz != 1): rasie("Error Recon Gadget only supports 2D for now") self.buffer = np.zeros((channels, rNy, rNx), dtype=np.complex64) self.samp_mask = np.zeros(self.buffer.shape[1:]) self.header_proto = ismrmrd.ImageHeader() self.header_proto.matrix_size[0] = rNx self.header_proto.matrix_size[1] = rNy self.header_proto.matrix_size[2] = rNz self.header_proto.field_of_view[0] = rFOVx self.header_proto.field_of_view[1] = rFOVy self.header_proto.field_of_view[0] = rFOVz #Now put data in buffer line_offset = self.buffer.shape[ 1] / 2 - self.enc.encodingLimits.kspace_encoding_step_1.center self.buffer[:, acq.idx.kspace_encode_step_1 + line_offset, :] = data self.samp_mask[acq.idx.kspace_encode_step_1 + line_offset, :] = 1 #If last scan in buffer, do FFT and fill image header if acq.isFlagSet(ismrmrd.ACQ_LAST_IN_ENCODE_STEP1) or acq.isFlagSet( ismrmrd.ACQ_LAST_IN_SLICE): img_head = copy.deepcopy(self.header_proto) img_head.position = acq.position img_head.read_dir = acq.read_dir img_head.phase_dir = acq.phase_dir img_head.slice_dir = acq.slice_dir img_head.patient_table_position = acq.patient_table_position img_head.acquisition_time_stamp = acq.acquisition_time_stamp img_head.slice = acq.idx.slice img_head.channels = 1 scale = self.samp_mask.size / (1.0 * np.sum(self.samp_mask[:])) #We have not yet calculated unmixing coefficients if self.unmix is None: self.calib_buffer.append((img_head, self.buffer.copy())) self.buffer[:] = 0 self.samp_mask[:] = 0 if len(self.calib_buffer) >= self.calib_frames: cal_data = np.zeros(self.calib_buffer[0][1].shape, dtype=np.complex64) for c in self.calib_buffer: cal_data = cal_data + c[1] mask = np.squeeze(np.sum(np.abs(cal_data), 0)) mask = np.ones(mask.shape) * (np.abs(mask) > 0.0) target = None #cal_data[0:8,:,:] coil_images = transform.transform_kspace_to_image(cal_data, dim=(1, 2)) (csm, rho) = coils.calculate_csm_walsh(coil_images) if self.method == 'grappa': self.unmix, self.gmap = grappa.calculate_grappa_unmixing( cal_data, self.acc_factor, data_mask=mask, kernel_size=(4, 5), csm=csm) elif self.method == 'sense': self.unmix, self.gmap = sense.calculate_sense_unmixing( self.acc_factor, csm) else: raise Exception('Unknown parallel imaging method: ' + str(self.method)) for c in self.calib_buffer: recon = transform.transform_kspace_to_image( c[1], dim=(1, 2)) * np.sqrt(scale) recon = np.squeeze(np.sum(recon * self.unmix, 0)) self.put_next(c[0], recon, *args) return 0 if self.unmix is None: raise Exception( "We should never reach this point without unmixing coefficients" ) recon = transform.transform_kspace_to_image( self.buffer, dim=(1, 2)) * np.sqrt(scale) recon = np.squeeze(np.sum(recon * self.unmix, 0)) self.buffer[:] = 0 self.samp_mask[:] = 0 self.put_next(img_head, recon, *args) return 0
from mr_utils import view from ismrmrdtools.coils import calculate_csm_inati_iter, calculate_csm_walsh if __name__ == '__main__': im0 = np.load('data/20190401_GASP_PHANTOM/set2_gre_tr34_te2_87.npy') im0 = np.mean(im0, axis=2) im0 = np.moveaxis(im0, -1, 0) im1 = np.load('data/20190401_GASP_PHANTOM/set2_gre_tr4_te5_74.npy') im1 = np.mean(im1, axis=2) im1 = np.moveaxis(im1, -1, 0) # Make a field map coil by coil fm0 = dual_echo_gre(im0, im1, 2.87e-3, 5.74e-3) np.save('data/20190401_GASP_PHANTOM/coil_fm_gre.npy', fm0) view(fm0) fm0 = np.mean(fm0, axis=0) # Coil combine im0 and im1 then get field map _, im0cc0 = calculate_csm_inati_iter(im0) _, im1cc0 = calculate_csm_inati_iter(im1) csm, _ = calculate_csm_walsh(im0) im0cc1 = np.sum(np.conj(im0) * csm, axis=0) csm, _ = calculate_csm_walsh(im1) im1cc1 = np.sum(np.conj(im1) * csm, axis=0) fm1 = dual_echo_gre(im0cc0, im1cc0, 2.87e-3, 5.74e-3) fm2 = dual_echo_gre(im0cc1, im1cc1, 2.87e-3, 5.74e-3) # Compare view(np.stack((fm0, fm1, fm2)))
def comparison_numerical_phantom(SNR=None): '''Compare coil by coil, Walsh method, and Inati iterative method.''' true_im = get_true_im_numerical_phantom() csms = get_coil_sensitivity_maps() params = get_numerical_phantom_params(SNR=SNR) pc_vals = params['pc_vals'] dim = params['dim'] noise_std = params['noise_std'] coil_nums = params['coil_nums'] # We want to solve gs_recon for each coil we have in the pc set err = np.zeros((5, len(csms))) rip = err.copy() for ii, csm in enumerate(csms): # I have coil sensitivities, now I need images to apply them to. # coil_ims: (pc,coil,x,y) coil_ims = np.zeros((len(pc_vals), csm.shape[0], dim, dim), dtype='complex') for jj, pc in enumerate(pc_vals): im = bssfp_2d_cylinder(dims=(dim, dim), phase_cyc=pc) im += 1j * im coil_ims[jj, ...] = im * csm coil_ims[jj, ...] += np.random.normal(0, noise_std, coil_ims[ jj, ...].shape) / 2 + 1j * np.random.normal( 0, noise_std, coil_ims[jj, ...].shape) / 2 # Solve the gs_recon coil by coil coil_ims_gs = np.zeros((csm.shape[0], dim, dim), dtype='complex') for kk in range(csm.shape[0]): coil_ims_gs[kk, ...] = gs_recon(*[ x.squeeze() for x in np.split(coil_ims[:, kk, ...], len(pc_vals)) ]) coil_ims_gs[np.isnan(coil_ims_gs)] = 0 # Easy way out: combine all the coils using sos im_est_sos = sos(coil_ims_gs) # view(im_est_sos) # Take coil by coil solution and do Walsh on it to collapse coil dim # walsh csm_walsh, _ = calculate_csm_walsh(coil_ims_gs) im_est_recon_then_walsh = np.sum(csm_walsh * np.conj(coil_ims_gs), axis=0) im_est_recon_then_walsh[np.isnan(im_est_recon_then_walsh)] = 0 # view(im_est_recon_then_walsh) # inati csm_inati, im_est_recon_then_inati = calculate_csm_inati_iter( coil_ims_gs) # Collapse the coil dimension of each phase-cycle using Walsh,Inati pc_est_walsh = np.zeros((len(pc_vals), dim, dim), dtype='complex') pc_est_inati = np.zeros((len(pc_vals), dim, dim), dtype='complex') for jj in range(len(pc_vals)): ## Walsh csm_walsh, _ = calculate_csm_walsh(coil_ims[jj, ...]) pc_est_walsh[jj, ...] = np.sum(csm_walsh * np.conj(coil_ims[jj, ...]), axis=0) # view(csm_walsh) # view(pc_est_walsh) ## Inati csm_inati, pc_est_inati[jj, ...] = calculate_csm_inati_iter( coil_ims[jj, ...], smoothing=1) # pc_est_inati[jj,...] = np.sum(csm_inati*np.conj(coil_ims[jj,...]),axis=0) # view(csm_inati) # Now solve the gs_recon using collapsed coils im_est_walsh = gs_recon( *[x.squeeze() for x in np.split(pc_est_walsh, len(pc_vals))]) im_est_inati = gs_recon( *[x.squeeze() for x in np.split(pc_est_inati, len(pc_vals))]) # view(im_est_walsh) # view(im_est_recon_then_walsh) # Compute error metrics err[0, ii] = compare_nrmse(im_est_sos, true_im) err[1, ii] = compare_nrmse(im_est_recon_then_walsh, true_im) err[2, ii] = compare_nrmse(im_est_recon_then_inati, true_im) err[3, ii] = compare_nrmse(im_est_walsh, true_im) err[4, ii] = compare_nrmse(im_est_inati, true_im) im_est_sos[np.isnan(im_est_sos)] = 0 im_est_recon_then_walsh[np.isnan(im_est_recon_then_walsh)] = 0 im_est_recon_then_inati[np.isnan(im_est_recon_then_inati)] = 0 im_est_walsh[np.isnan(im_est_walsh)] = 0 im_est_inati[np.isnan(im_est_inati)] = 0 rip[0, ii] = ripple_normal(im_est_sos) rip[1, ii] = ripple_normal(im_est_recon_then_walsh) rip[2, ii] = ripple_normal(im_est_recon_then_inati) rip[3, ii] = ripple_normal(im_est_walsh) rip[4, ii] = ripple_normal(im_est_inati) # view(im_est_inati) # # SOS of the gs solution on each individual coil gives us low periodic # # ripple accross the phantom, similar to Walsh method: # plt.plot(np.abs(true_im[int(dim/2),:]),'--',label='True Im') # plt.plot(np.abs(im_est_sos[int(dim/2),:]),'-.',label='SOS') # plt.plot(np.abs(im_est_recon_then_walsh[int(dim/2),:]),label='Recon then Walsh') # plt.plot(np.abs(im_est_walsh[int(dim/2),:]),label='Walsh then Recon') # # plt.plot(np.abs(im_est_inati[int(dim/2),:]),label='Inati') # plt.legend() # plt.show() # # Let's show some stuff # plt.plot(coil_nums,err[0,:],'*-',label='SOS') # plt.plot(coil_nums,err[1,:],label='Recon then Walsh') # plt.plot(coil_nums,err[2,:],label='Walsh then Recon') # # plt.plot(coil_nums,err[3,:],label='Inati') # plt.legend() # plt.show() print('SOS RMSE:', np.mean(err[0, :])) print('recon then walsh RMSE:', np.mean(err[1, :])) print('recon then inati RMSE:', np.mean(err[2, :])) print('walsh then recon RMSE:', np.mean(err[3, :])) print('inati then recon RMSE:', np.mean(err[4, :])) print('SOS ripple:', np.mean(err[0, :])) print('recon then walsh ripple:', np.mean(rip[1, :])) print('recon then inati ripple:', np.mean(rip[2, :])) print('walsh then recon ripple:', np.mean(rip[3, :])) print('inati then recon ripple:', np.mean(rip[4, :])) view(im_est_recon_then_walsh[int(dim / 2), :]) view(im_est_recon_then_inati[int(dim / 2), :]) view(im_est_walsh[int(dim / 2), :]) view(im_est_inati[int(dim / 2), :]) # view(im_est_inati) # view(np.stack((im_est_recon_then_walsh,im_est_recon_then_inati,im_est_walsh,im_est_inati))) return (err)
def comparison_knee(): '''Coil by coil, Walsh method, and Inati iterative method for knee data.''' # Load the knee data dir = '/home/nicholas/Documents/rawdata/SSFP_SPECTRA_dphiOffset_08022018/' files = [ 'meas_MID362_TRUFI_STW_TE3_FID29379', 'meas_MID363_TRUFI_STW_TE3_dphi_45_FID29380', 'meas_MID364_TRUFI_STW_TE3_dphi_90_FID29381', 'meas_MID365_TRUFI_STW_TE3_dphi_135_FID29382', 'meas_MID366_TRUFI_STW_TE3_dphi_180_FID29383', 'meas_MID367_TRUFI_STW_TE3_dphi_225_FID29384', 'meas_MID368_TRUFI_STW_TE3_dphi_270_FID29385', 'meas_MID369_TRUFI_STW_TE3_dphi_315_FID29386' ] pc_vals = [0, 45, 90, 135, 180, 225, 270, 315] dims = (512, 256) num_coils = 4 num_avgs = 16 # # Load in raw once, then save as npy with collapsed avg dimension # pcs = np.zeros((len(files),dims[0],dims[1],num_coils),dtype='complex') # for ii,file in enumerate(files): # pcs[ii,...] = np.mean(load_raw('%s/%s.dat' % (dir,file),use='s2i'),axis=-1) # np.save('%s/te3.npy' % dir,pcs) # pcs looks like (pc,x,y,coil) pcs = np.load('%s/te3.npy' % dir) pcs = np.fft.fftshift(np.fft.fft2(pcs, axes=(1, 2)), axes=(1, 2)) # print(pcs.shape) # view(pcs,fft=True,montage_axis=0,movie_axis=3) # Do recon then coil combine coils0 = np.zeros((pcs.shape[-1], pcs.shape[1], pcs.shape[2]), dtype='complex') coils1 = coils0.copy() for ii in range(pcs.shape[-1]): # We have two sets: 0,90,180,27 and 45,135,225,315 idx0 = [0, 2, 4, 6] idx1 = [1, 3, 5, 7] coils0[ii, ...] = gs_recon(*[x.squeeze() for x in pcs[idx0, :, :, ii]]) coils1[ii, ...] = gs_recon(*[x.squeeze() for x in pcs[idx1, :, :, ii]]) # Then do the coil combine csm_walsh, _ = calculate_csm_walsh(coils0) im_est_recon_then_walsh0 = np.sum(csm_walsh * np.conj(coils0), axis=0) # view(im_est_recon_then_walsh0) csm_walsh, _ = calculate_csm_walsh(coils1) im_est_recon_then_walsh1 = np.sum(csm_walsh * np.conj(coils1), axis=0) # view(im_est_recon_then_walsh1) rip0 = ripple(im_est_recon_then_walsh0) rip1 = ripple(im_est_recon_then_walsh1) print('recon then walsh: ', np.mean([rip0, rip1])) # Now try inati csm_inati, im_est_recon_then_inati0 = calculate_csm_inati_iter(coils0, smoothing=5) csm_inati, im_est_recon_then_inati1 = calculate_csm_inati_iter(coils1, smoothing=5) rip0 = ripple(im_est_recon_then_inati0) rip1 = ripple(im_est_recon_then_inati1) print('recon then inati: ', np.mean([rip0, rip1])) # Now try sos im_est_recon_then_sos0 = sos(coils0, axes=0) im_est_recon_then_sos1 = sos(coils1, axes=0) rip0 = ripple(im_est_recon_then_sos0) rip1 = ripple(im_est_recon_then_sos1) print('recon then sos: ', np.mean([rip0, rip1])) # view(im_est_recon_then_sos) ## Now the other way, combine then recon pcs0 = np.zeros((2, pcs.shape[0], pcs.shape[1], pcs.shape[2]), dtype='complex') pcs1 = pcs0.copy() for ii in range(pcs.shape[0]): # Walsh it up csm_walsh, _ = calculate_csm_walsh(pcs[ii, ...].transpose((2, 0, 1))) pcs0[0, ii, ...] = np.sum(csm_walsh * np.conj(pcs[ii, ...].transpose( (2, 0, 1))), axis=0) # view(pcs0[ii,...]) # Inati it up csm_inati, pcs0[1, ii, ...] = calculate_csm_inati_iter(pcs[ii, ...].transpose( (2, 0, 1)), smoothing=5) ## Now perform gs_recon on each coil combined set # Walsh im_est_walsh_then_recon0 = gs_recon( *[x.squeeze() for x in pcs0[0, idx0, ...]]) im_est_walsh_then_recon1 = gs_recon( *[x.squeeze() for x in pcs0[0, idx1, ...]]) # Inati im_est_inati_then_recon0 = gs_recon( *[x.squeeze() for x in pcs0[1, idx0, ...]]) im_est_inati_then_recon1 = gs_recon( *[x.squeeze() for x in pcs0[1, idx1, ...]]) # view(im_est_walsh_then_recon0) # view(im_est_walsh_then_recon1) view(im_est_inati_then_recon0) view(im_est_inati_then_recon1) rip0 = ripple(im_est_walsh_then_recon0) rip1 = ripple(im_est_walsh_then_recon1) print('walsh then recon: ', np.mean([rip0, rip1])) rip0 = ripple(im_est_inati_then_recon0) rip1 = ripple(im_est_inati_then_recon1) print('inati then recon: ', np.mean([rip0, rip1]))
def calculate_grappa_unmixing(source_data, acc_factor, kernel_size=(4, 5), data_mask=None, csm=None, regularization_factor=0.001, target_data=None): '''Calculates unmixing coefficients for a 2D image using a GRAPPA algorithm :param source_data: k-space source data ``[coils, y, x]`` :param acc_factor: Acceleration factor, e.g. 2 :param kernel_shape: Shape of the k-space kernel ``(ky-lines, kx-points)`` (default ``(4,5)``) :param data_mask: Mask of where calibration data is located in source_data (defaults to all of source_data) :param csm: Coil sensitivity map, ``[coil, y, x]`` (used for b1-weighted combining. Will be estimated from calibratino data if not supplied) :param regularization_factor: adds tychonov regularization (default ``0.001``) - 0 = no regularization - set higher for more aggressive regularization. :param target_data: If target data differs from source data (defaults to source_data) :returns unmix: Image unmixing coefficients for a single ``x`` location, ``[coil, y, x]`` :returns gmap: Noise enhancement map, ``[y, x]`` ''' nx = source_data.shape[2] ny = source_data.shape[1] nc_source = source_data.shape[0] if target_data is None: target_data = source_data if data_mask is None: data_mask = np.ones((ny, nx)) nc_target = target_data.shape[0] if csm is None: #Assume calibration data is in the middle f = np.asarray( np.asmatrix(np.hamming(np.max(np.sum(data_mask, 0)))).T * np.asmatrix(np.hamming(np.max(np.sum(data_mask, 1))))) fmask = np.zeros((source_data.shape[1], source_data.shape[2]), dtype=np.complex64) idx = np.argwhere(data_mask == 1) fmask[idx[:, 0], idx[:, 1]] = f.reshape(idx.shape[0]) fmask = np.tile(fmask[None, :, :], (nc_source, 1, 1)) csm = fftshift(ifftn(ifftshift(source_data * fmask, axes=(1, 2)), axes=(1, 2)), axes=(1, 2)) (csm, rho) = coils.calculate_csm_walsh(csm) kernel = np.zeros( (nc_target, nc_source, kernel_size[0] * acc_factor, kernel_size[1]), dtype=np.complex64) sampled_indices = np.nonzero(data_mask) kx_cal = (sampled_indices[1][0], sampled_indices[1][-1]) ky_cal = (sampled_indices[0][0], sampled_indices[0][-1]) for s in range(0, acc_factor): kernel_mask = np.zeros((kernel_size[0] * acc_factor, kernel_size[1]), dtype=np.int8) kernel_mask[s:kernel_mask.shape[0]:acc_factor, :] = 1 s_data = source_data[:, ky_cal[0]:ky_cal[1], kx_cal[0]:kx_cal[1]] t_data = target_data[:, ky_cal[0]:ky_cal[1], kx_cal[0]:kx_cal[1]] k = estimate_convolution_kernel( s_data, kernel_mask, regularization_factor=regularization_factor, target_data=t_data) kernel = kernel + k #return kernel kernel = kernel[:, :, ::-1, :: -1] #flip kernel in preparation for convolution csm_ss = np.sum(csm * np.conj(csm), 0) csm_ss = csm_ss + 1.0 * (csm_ss < np.spacing(1)).astype('float32') unmix = np.zeros(source_data.shape, dtype=np.complex64) for c in range(0, nc_target): kernel_pad = _pad_kernel(kernel[c, :, :, :], unmix.shape) kernel_pad = fftshift(ifftn(ifftshift(kernel_pad, axes=(1, 2)), axes=(1, 2)), axes=(1, 2)) kernel_pad *= unmix.shape[1] * unmix.shape[2] unmix = unmix + (kernel_pad * np.tile( np.conj(csm[c, :, :]) / csm_ss, (nc_source, 1, 1))) unmix /= acc_factor gmap = np.squeeze(np.sqrt(np.sum(abs(unmix)**2, 0))) * np.squeeze( np.sqrt(np.sum(abs(csm)**2, 0))) return (unmix.astype('complex64'), gmap.astype('float32'))
# -*- coding: utf-8 -*- #%% #Basic setup import time import numpy as np from ismrmrdtools import simulation, coils, show matrix_size = 256 csm = simulation.generate_birdcage_sensitivities(matrix_size) phan = simulation.phantom(matrix_size) coil_images = phan[np.newaxis, :, :] * csm show.imshow(abs(coil_images), tile_shape=(4, 2)) tstart = time.time() (csm_est, rho) = coils.calculate_csm_walsh(coil_images) print("Walsh coil estimation duration: {}s".format(time.time() - tstart)) combined_image = np.sum(csm_est * coil_images, axis=0) show.imshow(abs(csm_est), tile_shape=(4, 2), scale=(0, 1)) show.imshow(abs(combined_image), scale=(0, 1)) tstart = time.time() (csm_est2, rho2) = coils.calculate_csm_inati_iter(coil_images) print("Inati coil estimation duration: {}s".format(time.time() - tstart)) combined_image2 = np.sum(csm_est2 * coil_images, axis=0) show.imshow(abs(csm_est2), tile_shape=(4, 2), scale=(0, 1)) show.imshow(abs(combined_image2), scale=(0, 1))