def ensemble_models(models, id): _, test_ids = load_test_dataset(size=64) predictions = np.zeros((test_ids.shape[0], 10)) submission = np.empty((test_ids.shape[0])) count = 0 for model_data in models: x_test, _ = load_test_dataset(size=int(model_data[0][-2:])) print("Predict {}".format(model_data[0])) count += 1 model = load_model("../{}/models/model_{}.h5".format( model_data[0], model_data[1])) prediction = model.predict(x_test) predictions += prediction predictions = np.argmax(predictions / count, axis=1) for label, image_id in zip(predictions, test_ids): submission[image_id - 1] = label + 1 submission_csv = pd.read_csv( "/home/shouki/Desktop/Programming/Python/AI/Datasets/ImageData/ISSM/sampleSolution.csv" ) submission_csv["LABEL"] = np.array(submission, dtype=np.int32) submission_csv.to_csv("./submission/submission_{}.csv".format(id), index=False)
def create_submission_file(epoch): x_test, test_ids = load_test_dataset() model = load_model("./models/model_{}.h5".format(epoch)) predictions = np.argmax(model.predict(x_test), axis=1) submission = np.empty((predictions.shape[0])) for label, image_id in zip(predictions, test_ids): submission[image_id - 1] = label + 1 submission_csv = pd.read_csv("/home/shouki/Desktop/Programming/Python/AI/Datasets/ImageData/ISSM/sampleSolution.csv") submission_csv["LABEL"] = np.array(submission, dtype=np.int32) submission_csv.to_csv("./submission/submission_{}.csv".format(epoch), index=False)
from issm import load_test_dataset from keras.utils import to_categorical from keras.models import load_model import tensorflow as tf import numpy as np import pandas as pd physical_devices = tf.config.experimental.list_physical_devices("GPU") tf.config.experimental.set_memory_growth(physical_devices[0], True) x_test, test_ids = load_test_dataset() model = load_model("./models/model_final.h5") predictions = np.argmax(model.predict( x_test), axis=1) submission = np.empty((predictions.shape[0])) for label, image_id in zip(predictions, test_ids): submission[image_id - 1] = label + 1 submission_csv = pd.read_csv("/home/shouki/Desktop/Programming/Python/AI/Datasets/ImageData/ISSM/sampleSolution.csv") submission_csv["LABEL"] = np.array(submission, dtype=np.int32) submission_csv.to_csv("./submission/submission.csv", index=False)