Example #1
0
 def setUp(self) -> None:
     self._horizon = 3
     self._predicted = [{
         'zlib': TimeSeries([1, 1.5, 2], dtype=float)
     }, {
         'zlib': TimeSeries([1.4, 1.6, 1.8], dtype=float)
     }]
     self._observed = [
         TimeSeries([1.1, 1.4, 1.8], dtype=float),
         TimeSeries([1.4, 1.8, 2.0], dtype=float)
     ]
Example #2
0
    def test_postprocessing_made_correctly(self):
        forecasts = {
            'zlib': TimeSeries([2, 3, 2, 3], dtype=int, frequency=1),
            'ppmd': TimeSeries([3, 3, 2, 3], dtype=int, frequency=1)
        }
        expected_result = {
            'zlib': TimeSeries([9, 11, 11, 12], dtype=int, frequency=1),
            'ppmd': TimeSeries([10, 11, 11, 13], dtype=int, frequency=1)
        }

        self._hook.preprocess(self._series)
        actual_result = self._hook.postprocess(forecasts)
        self.assertEqual(actual_result, expected_result)
Example #3
0
 def setUp(self):
     self._time_series = TimeSeries([1, 2, 3], dtype=int, frequency=2)
     self._statistics_handler = MagicMock()
     self._task = SimpleTask(self._statistics_handler,
                             Types(int, TimeSeries,
                                   DiscreteUnivariateElemetaryTask),
                             time_series=self._time_series,
                             compressors='',
                             horizon=0,
                             difference=0,
                             sparse=-1)
     self._result_of_computation = {
         'zlib': TimeSeries([1, 2, 3], dtype=int, frequency=1)
     }
Example #4
0
    def setUp(self) -> None:
        self._time_series = TimeSeries([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
                                       dtype=int,
                                       frequency=1)
        self._horizon = 3
        self._statistics_handler = MagicMock()
        self._task = ComplexTask(
            self._statistics_handler,
            Types(int, TimeSeries, DiscreteUnivariateElemetaryTask),
            self._time_series, 5, ['zlib'], self._horizon, 0, 0)

        self._prediction0 = {'zlib': TimeSeries([10, 11, 12], dtype=int)}
        self._prediction1 = {'zlib': TimeSeries([13, 14, 15], dtype=int)}
        self._prediction2 = {'zlib': TimeSeries([16, 17, 18], dtype=int)}
        self._actual_forecast = {'zlib': TimeSeries([19, 20, 21], dtype=int)}
        self._expected_predicted_values = [
            self._prediction0, self._prediction1, self._prediction2
        ]
        self._expected_observed_values = [
            TimeSeries([5, 6, 7], dtype=int),
            TimeSeries([6, 7, 8], dtype=int),
            TimeSeries([7, 8, 9], dtype=int)
        ]
        self._result_of_computation = [
            self._prediction0, self._prediction1, self._prediction2,
            self._actual_forecast
        ]
Example #5
0
    def test_reverse_transformation_works_correctly(self):
        series = TimeSeries([0, 1, 2, 3, 4, 5, 7, 9, 11],
                            dtype=int,
                            frequency=1)
        result = {
            'zlib': TimeSeries([8, 6, 6], dtype=int, frequency=1),
            'ppmd': TimeSeries([8, 7, 6], dtype=int, frequency=1)
        }
        expected_result = {
            'zlib': TimeSeries([12, 11, 13], dtype=int, frequency=1),
            'ppmd': TimeSeries([12, 12, 13], dtype=int, frequency=1)
        }

        self._hook.preprocess(series)
        self.assertEqual(self._hook.postprocess(result), expected_result)
Example #6
0
 def test_returns_right_relative_errors(self):
     expected_relative_errors = TimeSeries(
         [0.07142857, 0.21428571, 0.28571429], dtype=float)
     obtained_relative_errors = self._statistics.relative_errors('zlib')
     for i in range(len(expected_relative_errors)):
         self.assertAlmostEqual(obtained_relative_errors[i],
                                expected_relative_errors[i])
Example #7
0
 def test_returns_right_mean_absolute_errors(self):
     expected_absolute_errors = TimeSeries([0.05, 0.15, 0.2], dtype=float)
     obtained_absolute_errors = self._statistics.mean_absolute_errors(
         'zlib')
     for i in range(len(expected_absolute_errors)):
         self.assertAlmostEqual(obtained_absolute_errors[i],
                                expected_absolute_errors[i])
Example #8
0
    def test_compute_standard_deviations_returns_right_answer(self) -> None:
        expected_result = {'zlib': TimeSeries([0.05, 0.05, 0.0], dtype=float)}
        actual_result = sut._compute_standard_deviations(
            self._predicted, self._observed, self._horizon)

        for i in range(len(expected_result['zlib'])):
            self.assertAlmostEqual(expected_result['zlib'][i],
                                   actual_result['zlib'][i])
Example #9
0
    def test_compute_sum_of_errors_returns_right_answer(self) -> None:
        expected_result = {'zlib': TimeSeries([0.1, 0.3, 0.4], dtype=float)}
        actual_result = sut._compute_sum_of_errors(self._predicted,
                                                   self._observed,
                                                   self._horizon)

        for i in range(len(expected_result['zlib'])):
            self.assertAlmostEqual(expected_result['zlib'][i],
                                   actual_result['zlib'][i])
Example #10
0
 def forecast_discrete(time_series, compressors, horizon, difference,
                       sparse) -> Dict[str, TimeSeries]:
     result = p.make_forecast_discrete(time_series.to_list(), compressors,
                                       horizon, difference, sparse)
     return {
         key: TimeSeries([round(x) for x in value], time_series.frequency(),
                         time_series.dtype())
         for key, value in result.items()
     }
Example #11
0
 def forecast_multialphabet(time_series, compressors, horizon, difference,
                            max_quanta_count,
                            sparse) -> Dict[str, TimeSeries]:
     result = p.make_forecast_multialphabet(time_series.to_list(),
                                            compressors, horizon,
                                            difference, max_quanta_count,
                                            sparse)
     return {
         key: TimeSeries(value, time_series.frequency(),
                         time_series.dtype())
         for key, value in result.items()
     }
Example #12
0
 def setUp(self) -> None:
     self._history = TimeSeries([0.5, 0.8, 0.8], dtype=float)
     self._horizon = 3
     self._predicted = [{
         'zlib': TimeSeries([1, 1.5, 2], dtype=float)
     }, {
         'zlib': TimeSeries([1.4, 1.6, 1.8], dtype=float)
     }]
     self._observed = [
         TimeSeries([1.1, 1.4, 1.8], dtype=float),
         TimeSeries([1.4, 1.8, 2.0], dtype=float)
     ]
     self._forecast = {'zlib': TimeSeries([1, 1.5, 2], dtype=float)}
     self._statistics = sut.ComplexTaskStatisticsHandler()
     self._statistics.set_results_of_computations(self._history,
                                                  self._forecast,
                                                  self._predicted,
                                                  self._observed,
                                                  self._horizon)
Example #13
0
 def test_works_correctly_on_series_of_minimal_correct_length(self):
     series = TimeSeries([1, 2, 3], dtype=int, frequency=1)
     expected_result = TimeSeries([(2 * 3 + 2 + 1) / 4],
                                  dtype=int,
                                  frequency=1)
     self.assertEqual(self._hook.preprocess(series), expected_result)
Example #14
0
 def test_returns_right_upper_bounds(self):
     expected_upper_bounds = TimeSeries([1.05, 1.55, 2], dtype=float)
     obtained_upper_bounds = self._statistics.upper_bounds('zlib')
     for i in range(len(expected_upper_bounds)):
         self.assertAlmostEqual(obtained_upper_bounds[i],
                                expected_upper_bounds[i])
Example #15
0
 def setUp(self) -> None:
     self._history = TimeSeries([0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1],
                                dtype=int)
     self._horizon = 1
     self._predicted = [{
         'zlib': TimeSeries([1]),
         'automaton': TimeSeries([0])
     }, {
         'zlib': TimeSeries([1]),
         'automaton': TimeSeries([0])
     }, {
         'zlib': TimeSeries([0]),
         'automaton': TimeSeries([0])
     }, {
         'zlib': TimeSeries([1]),
         'automaton': TimeSeries([1])
     }, {
         'zlib': TimeSeries([0]),
         'automaton': TimeSeries([1])
     }, {
         'zlib': TimeSeries([1]),
         'automaton': TimeSeries([1])
     }]
     self._observed = [
         TimeSeries([0]),
         TimeSeries([0]),
         TimeSeries([0]),
         TimeSeries([1]),
         TimeSeries([1]),
         TimeSeries([1])
     ]
     self._forecast = {
         'zlib': TimeSeries([1]),
         'automaton': TimeSeries([0])
     }
     self._statistics = sut.SumOfErrorsStatisticsHandler()
     self._statistics.set_results_of_computations(self._history,
                                                  self._forecast,
                                                  self._predicted,
                                                  self._observed,
                                                  self._horizon)
Example #16
0
 def test_returns_right_sum_of_errors(self):
     self._sequences_almost_equal(self._statistics.sum_of_errors('zlib'),
                                  TimeSeries([3]))
     self._sequences_almost_equal(
         self._statistics.sum_of_errors('automaton'), TimeSeries([0]))
Example #17
0
 def test_signals_if_length_is_not_enough(self):
     series = TimeSeries([1], dtype=int, frequency=1)
     self.assertRaises(HookError, self._hook.preprocess, series)
Example #18
0
 def test_ts_standard_deviation_works_in_univariate_case(self):
     self.assertAlmostEqual(
         sut.ts_standard_deviation(
             TimeSeries([1.5, 2.5, 3.8], dtype=float, frequency=1)),
         np.std([1.5, 2.5, 3.8]))
Example #19
0
 def test_preprocessing_made_correctly(self):
     actual_result = self._hook.preprocess(self._series)
     expected_result = TimeSeries([1, 1, 0, 1, 1, 2, 3, 3, 3],
                                  dtype=int,
                                  frequency=1)
     self.assertEqual(actual_result, expected_result)
Example #20
0
 def setUp(self) -> None:
     self._series = TimeSeries([1, 2, 3, 4, 5, 3, 4, 5, 5, 6, 7, 8, 9, 10],
                               dtype=int,
                               frequency=1)
     self._hook = CombinedHook(BasicSmoothingHook(), LagDifferencingHook(3))
Example #21
0
 def test_ts_mean_signals_error_on_empty_input(self):
     self.assertRaises(ValueError, sut.ts_mean, TimeSeries())
Example #22
0
 def test_works_correctly_if_series_length_greater_than_lag(self):
     series = TimeSeries([0, 1, 2, 3, 4, 5, 7, 9, 11],
                         dtype=int,
                         frequency=1)
     expected_series = TimeSeries([5, 6, 7, 8], dtype=int, frequency=1)
     self.assertEqual(self._hook.preprocess(series), expected_series)
Example #23
0
 def test_returns_input_series_if_lag_equals_to_series_length(self):
     series = TimeSeries([0, 1, 2, 3, 4], dtype=int, frequency=1)
     self.assertEqual(self._hook.preprocess(series), series)
Example #24
0
 def test_returns_input_series_if_its_size_less_than_lag(self):
     series = TimeSeries([1, 2, 3], dtype=int, frequency=1)
     self.assertEqual(self._hook.preprocess(series), series)
Example #25
0
 def test_ts_mean_works_in_univariate_case(self):
     self.assertAlmostEqual(
         sut.ts_mean(TimeSeries([1.5, 2.5, 3.8], dtype=float, frequency=1)),
         2.6)