Example #1
0
    def _runImp(self):
        if self._N0_32F is None:
            self._computeInitialNormal()
        self._optimize()

        L = self._L
        self._I_32F = diffuse(self._N_32F, L)
        reflectance = LambertReflectanceEstimation(self._C0_32F, self._I_32F)
        self._C_32F = reflectance.shading(self._I_32F)
def errorTable():
    colormap_files = colorMapFiles()
    num_colormap_files = len(colormap_files)
    M_errors = np.zeros((num_colormap_files))

    for mi, colormap_file in enumerate(colormap_files):
        M_32F = loadColorMap(colormap_file)
        C_32F = M_32F.reshape(1, len(M_32F), 3)

        I_32F = np.linspace(0.0, 1.0, len(M_32F))
        I_32F = I_32F.reshape(C_32F.shape[:2])
        reflectance = LambertReflectanceEstimation(C_32F, I_32F)
        Ml = reflectance.shading(I_32F)[0, :, :]

        I0_32F = luminance(C_32F)
        IL_32F = luminance(Ml.reshape(1, -1, 3))

        I_min, I_max = np.min(I0_32F), np.max(I0_32F)

        M_error = normVectors(M_32F - Ml)

        #M_errors[mi] = np.mean(M_error) / (I_max - I_min)

        # M_errors[mi] = computeGradientDistance(M_32F, Ml) / (I_max - I_min)

        #M_errors[mi] = np.linalg.norm(I0_32F - IL_32F) / (I_max - I_min)

        M_errors[mi] = np.mean(M_error) / (I_max - I_min)

        # M_errors[mi] = np.linalg.norm(M_32F - Ml) / (I_max - I_min)
        # M_errors[mi] = compareHist(M_32F, Ml)

    file_path = shapeResultFile("ReflectanceEstimation", "ReflectanceError", file_ext=".npy")
    np.save(file_path, M_errors)

    plt.plot(M_errors)
    plt.show()
def reflectanceEstimationFigure():
    errorTable()
    M_errors = loadReflectanceErrorTable()
    M_error_orders = np.argsort(M_errors)

    print M_errors[M_error_orders]

    colormap_files = colorMapFiles()
    colormap_files = [colormap_files[M_error_order] for M_error_order in M_error_orders]

    colormap_files = colormap_files[0:-1:3]

    Ms = []
    MLs = []
    for colormap_file in colormap_files:
        M_32F = loadColorMap(colormap_file)
        Ms.append(M_32F)

        C_32F = M_32F.reshape(1, len(M_32F), 3)
        I_32F = np.linspace(0.0, 1.0, len(M_32F))
        I_32F = I_32F.reshape(C_32F.shape[:2])
        reflectance = LambertReflectanceEstimation(C_32F, I_32F)
        Ml = reflectance.shading(I_32F)

        MLs.append(Ml[0, :, :])

    num_rows = 3
    num_cols = len(colormap_files)

    w = 10
    h = w * num_rows / num_cols

    fig, axes = plt.subplots(figsize=(w, h))
    font_size = 15
    fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05)
    fig.suptitle("", fontsize=font_size)

    N_sphere, A_32F = normalSphere(h=512, w=512)
    Lg = normalizeVector(np.array([-0.2, 0.3, 0.6]))

    plot_grid = SubplotGrid(num_rows, num_cols)

    mi = 1

    for M, Ml in zip(Ms, MLs):
        CM_32F = ColorMapShader(M).diffuseShading(Lg, N_sphere)
        CL_32F = ColorMapShader(Ml).diffuseShading(Lg, N_sphere)
        C_error = normVectors((CM_32F - CL_32F).reshape(-1, 3)).reshape(CL_32F.shape[:2])
        C_error[A_32F < 0.5 * np.max(A_32F)] = 0.0

        plot_grid.setPlot(1, mi)
        plot_grid.showImage(setAlpha(CM_32F, A_32F), "")
        plot_grid.setPlot(2, mi)
        plot_grid.showImage(setAlpha(CL_32F, A_32F), "")
        plot_grid.setPlot(3, mi)
        plot_grid.showColorMap(C_error, "", v_min=0.0, v_max=0.3, with_colorbar=False)

        mi += 1

    file_path = shapeResultFile("ReflectanceEstimation", "ReflectanceEstimationError")
    fig.savefig(file_path, transparent=True)