def materialList(): shape_name = "ThreeBox" num_rows = 1 num_cols = len(colorMapFiles()) w = 24 h = w * num_rows / num_cols L = normalizeVector(np.array([-0.4, 0.5, 0.6])) fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.1, wspace=0.05) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data for colormap_file in colorMapFilesSortedReflectanceError(): M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "") file_path = shapeResultFile("ShapeEstimation", "MaterialList") fig.savefig(file_path, transparent=True)
def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U): M_32F = loadColorMap(colormap_file) L0 = normalizeVector(np.array([-0.2, 0.3, 0.6])) L0_img = lightSphere(L0) L0_txt = 0.01 * np.int32(100 * L0) C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size) plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$') plot_grid.showImage(L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' %(L0_txt[0], L0_txt[1], L0_txt[2])) plot_grid.showImage(L_img, r'Estimated light: $L = (%s, %s, %s)$' %(L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def materialErrorTable(): shape_name = "ThreeBox" L = normalizeVector(np.array([-0.4, 0.5, 0.6])) num_materials = len(colorMapFiles()) C_errors = np.zeros((num_materials, 3)) N_errors = np.zeros((num_materials, 3)) I_errors = np.zeros((num_materials, 3)) Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) for mi, color_map_file in enumerate(colorMapFiles()): M_32F = loadColorMap(color_map_file) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) toon_sfs = ToonSFS(L, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=20) toon_sfs.setWeights(w_lap=9.0) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U) C_error_toon, N_error_toon, I_error_toon = computeErrors(L, C0_32F, C_toon, Ng_32F, N_toon, A_8U) C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U) C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F, N_wu, A_8U) C_errors[mi, 0] = np.mean(C_error_toon) C_errors[mi, 1] = np.mean(C_error_lumo) C_errors[mi, 2] = np.mean(C_error_wu) I_errors[mi, 0] = np.mean(I_error_toon) I_errors[mi, 1] = np.mean(I_error_lumo) I_errors[mi, 2] = np.mean(I_error_wu) N_errors[mi, 0] = np.mean(N_error_toon) N_errors[mi, 1] = np.mean(N_error_lumo) N_errors[mi, 2] = np.mean(N_error_wu) file_path = shapeResultFile("ShapeEstimation", "MaterialShadingError", file_ext=".npy") np.save(file_path, C_errors) file_path = shapeResultFile("ShapeEstimation", "MaterialNormalError", file_ext=".npy") np.save(file_path, N_errors) file_path = shapeResultFile("ShapeEstimation", "MaterialIlluminationError", file_ext=".npy") np.save(file_path, I_errors)
def colorMapFigure(): L = normalizeVector(np.array([-0.2, 0.3, 0.7])) N_32F, A_32F = normalSphere(h=512, w=512) fig, axes = plt.subplots(figsize=(6, 4)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.1, wspace=0.1) fig.suptitle("", fontsize=font_size) num_rows = 4 num_cols = 6 plot_grid = SubplotGrid(num_rows, num_cols) for colormap_file in colorMapFiles(): M_32F = loadColorMap(colormap_file) C_32F = ColorMapShader(M_32F).diffuseShading(L, N_32F) plot_grid.showImage(setAlpha(C_32F, A_32F), "") file_path = os.path.join(colorMapResultsDir(), "ColorMapMaterials.png") fig.savefig(file_path, transparent=True)
def shapeList(): num_rows = 1 num_cols = len(shapeNames()) w = 20 h = w * num_rows / num_cols cmap_id = 10 colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) L = normalizeVector(np.array([-0.4, 0.5, 0.6])) fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) for shape_name in shapeNames(): Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "") file_path = shapeResultFile("ShapeEstimation", "ShapeList") fig.savefig(file_path, transparent=True)
def computeErrorTables(Lg=normalizeVector(np.array([-0.2, 0.3, 0.6]))): colormap_files = colorMapFiles() shape_names = shapeNames() num_materials = len(colormap_files) num_shapes = len(shape_names) L_errors = np.zeros((num_shapes, num_materials)) Ms = [] for colormap_file in colormap_files: M_32F = loadColorMap(colormap_file) Ms.append(M_32F) for si, shape_name in enumerate(shape_names): Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data for mi, M_32F in enumerate(Ms): C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_errors[si, mi] = angleError(Lg, L) file_path = shapeResultFile("LightEstimation", "LightEstimationError", file_ext=".npy") np.save(file_path, L_errors)
def stylizedShadingFigure(): target_shapes = ["Man", "Ogre", "Grog", "Vase"] target_shapes = [shapeFile(shape_name) for shape_name in target_shapes] target_colormaps = [1, 5, 10, 3] target_colormaps = [colorMapFile(cmap_id) for cmap_id in target_colormaps] fig, axes = plt.subplots(figsize=(12, 4)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.1, wspace=0.1) fig.suptitle("", fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) Ls = [] Ls.append(normalizeVector(np.array([-0.5, 0.3, 0.7]))) Ls.append(normalizeVector(np.array([0.2, -0.35, 0.4]))) Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3]))) Ls.append(normalizeVector(np.array([-0.2, 0.6, 0.3]))) for shape_file, colormap_file, L in zip(target_shapes, target_colormaps, Ls): N_32F, A_8U = loadNormal(shape_file) M_32F = loadColorMap(colormap_file) C_32F = ColorMapShader(M_32F).diffuseShading(L, N_32F) # C_32F = trim(C_32F, A_8U) # A_8U = trim(A_8U, A_8U) C_32F = setAlpha(C_32F, to32F(A_8U)) # h, w = C_32F.shape[:2] # # h_t = 512 # w_t = w * h_t / h # C_32F = cv2.resize(C_32F, (w_t, h_t)) plot_grid.showImage(C_32F, "", alpha_clip=True) file_path = os.path.join(shapeResultsDir(), "StylizedShading.png") fig.savefig(file_path, transparent=True)
def _runColorMap(self, colormap_file, Ng_32F, N0_32F, A_8U): M_32F = loadColorMap(colormap_file) L0 = normalizeVector(np.array([-0.2, 0.3, 0.6])) L0_img = lightSphere(L0) L0_txt = 0.01 * np.int32(100 * L0) C0_32F = ColorMapShader(M_32F).diffuseShading(L0, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_txt = 0.01 * np.int32(100 * L) L_img = lightSphere(L) fig, axes = plt.subplots(figsize=(11, 5)) font_size = 15 fig.subplots_adjust(left=0.05, right=0.95, top=0.9, hspace=0.12, wspace=0.05) fig.suptitle(self.name(), fontsize=font_size) num_rows = 1 num_cols = 4 plot_grid = SubplotGrid(num_rows, num_cols) plot_grid.showImage(setAlpha(C0_32F, A_8U), r'Input image: $\mathbf{c}$', font_size=font_size) plot_grid.showImage(normalToColor(N0_32F, A_8U), r'Initial normal: $\mathbf{N}_0$') plot_grid.showImage( L0_img, r'Ground trugh light: $L_g = (%s, %s, %s)$' % (L0_txt[0], L0_txt[1], L0_txt[2])) plot_grid.showImage( L_img, r'Estimated light: $L = (%s, %s, %s)$' % (L_txt[0], L_txt[1], L_txt[2])) showMaximize()
def errorTable(): colormap_files = colorMapFiles() num_colormap_files = len(colormap_files) M_errors = np.zeros((num_colormap_files)) for mi, colormap_file in enumerate(colormap_files): M_32F = loadColorMap(colormap_file) C_32F = M_32F.reshape(1, len(M_32F), 3) I_32F = np.linspace(0.0, 1.0, len(M_32F)) I_32F = I_32F.reshape(C_32F.shape[:2]) reflectance = LambertReflectanceEstimation(C_32F, I_32F) Ml = reflectance.shading(I_32F)[0, :, :] I0_32F = luminance(C_32F) IL_32F = luminance(Ml.reshape(1, -1, 3)) I_min, I_max = np.min(I0_32F), np.max(I0_32F) M_error = normVectors(M_32F - Ml) #M_errors[mi] = np.mean(M_error) / (I_max - I_min) # M_errors[mi] = computeGradientDistance(M_32F, Ml) / (I_max - I_min) #M_errors[mi] = np.linalg.norm(I0_32F - IL_32F) / (I_max - I_min) M_errors[mi] = np.mean(M_error) / (I_max - I_min) # M_errors[mi] = np.linalg.norm(M_32F - Ml) / (I_max - I_min) # M_errors[mi] = compareHist(M_32F, Ml) file_path = shapeResultFile("ReflectanceEstimation", "ReflectanceError", file_ext=".npy") np.save(file_path, M_errors) plt.plot(M_errors) plt.show()
def reflectanceEstimationFigure(): errorTable() M_errors = loadReflectanceErrorTable() M_error_orders = np.argsort(M_errors) print M_errors[M_error_orders] colormap_files = colorMapFiles() colormap_files = [colormap_files[M_error_order] for M_error_order in M_error_orders] colormap_files = colormap_files[0:-1:3] Ms = [] MLs = [] for colormap_file in colormap_files: M_32F = loadColorMap(colormap_file) Ms.append(M_32F) C_32F = M_32F.reshape(1, len(M_32F), 3) I_32F = np.linspace(0.0, 1.0, len(M_32F)) I_32F = I_32F.reshape(C_32F.shape[:2]) reflectance = LambertReflectanceEstimation(C_32F, I_32F) Ml = reflectance.shading(I_32F) MLs.append(Ml[0, :, :]) num_rows = 3 num_cols = len(colormap_files) w = 10 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05) fig.suptitle("", fontsize=font_size) N_sphere, A_32F = normalSphere(h=512, w=512) Lg = normalizeVector(np.array([-0.2, 0.3, 0.6])) plot_grid = SubplotGrid(num_rows, num_cols) mi = 1 for M, Ml in zip(Ms, MLs): CM_32F = ColorMapShader(M).diffuseShading(Lg, N_sphere) CL_32F = ColorMapShader(Ml).diffuseShading(Lg, N_sphere) C_error = normVectors((CM_32F - CL_32F).reshape(-1, 3)).reshape(CL_32F.shape[:2]) C_error[A_32F < 0.5 * np.max(A_32F)] = 0.0 plot_grid.setPlot(1, mi) plot_grid.showImage(setAlpha(CM_32F, A_32F), "") plot_grid.setPlot(2, mi) plot_grid.showImage(setAlpha(CL_32F, A_32F), "") plot_grid.setPlot(3, mi) plot_grid.showColorMap(C_error, "", v_min=0.0, v_max=0.3, with_colorbar=False) mi += 1 file_path = shapeResultFile("ReflectanceEstimation", "ReflectanceEstimationError") fig.savefig(file_path, transparent=True)
def relightingFigure(shape_name="Vase", cmap_id=3): num_methods = 3 num_lights = 2 num_rows = num_lights + 1 num_cols = num_methods + 2 w = 15 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) Lg = normalizeVector(np.array([-0.2, 0.3, 0.5])) Lg_img = lightSphere(Lg) L1 = normalizeVector(np.array([0.0, 0.7, 0.6])) L2 = normalizeVector(np.array([0.3, 0.5, 0.6])) # Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ] Ls = [L1, L2] Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F) toon_sfs = ToonSFS(Lg, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=50) toon_sfs.setWeights(w_lap=0.2) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U) M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U) M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U) plot_grid.showImage(Lg_img, "Light direction") plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result") #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True) for L in Ls: C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape) C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape) C1_toon = toon_sfs.relighting(L) plot_grid.showImage(lightSphere(L), "") plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "") title = "" plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "") # showMaximize() file_path = shapeResultFile("Relighting", "RelightingComparison", file_ext=".png") fig.savefig(file_path, transparent=True)
def methodComparisonFigure(shape_name="ThreeBox", cmap_id=10): num_methods = 3 num_rows = 3 num_cols = 2 * num_methods + 1 w = 20 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) L = normalizeVector(np.array([-0.4, 0.5, 0.6])) Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) toon_sfs = ToonSFS(L, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=100) toon_sfs.setWeights(w_lap=0.1) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U) C_error_toon, N_error_toon, I_error_toon = computeErrors( L, C0_32F, C_toon, Ng_32F, N_toon, A_8U) C_error_lumo, N_error_lumo, I_error_lumo = computeErrors( L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U) C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F, N_wu, A_8U) plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo") plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption") plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result") plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(normalToColor(Ng_32F, A_8U), title) plot_grid.showImage(normalToColor(N_lumo, A_8U), title) plot_grid.showColorMap(N_error_lumo, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(normalToColor(N_wu, A_8U), title) plot_grid.showColorMap(N_error_wu, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(normalToColor(N_toon, A_8U), title) plot_grid.showColorMap(N_error_toon, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(computeIllumination(L, Ng_32F, A_8U), title) plot_grid.showImage(computeIllumination(L, N_lumo, A_8U), title) plot_grid.showColorMap(I_error_lumo, title, v_min=0, v_max=0.2, with_colorbar=True) plot_grid.showImage(computeIllumination(L, N_wu, A_8U), title) plot_grid.showColorMap(I_error_wu, title, v_min=0, v_max=0.2, with_colorbar=True) plot_grid.showImage(computeIllumination(L, N_toon, A_8U), title) plot_grid.showColorMap(I_error_toon, title, v_min=0, v_max=0.2, with_colorbar=True) # showMaximize() file_path = shapeResultFile("ShapeEstimation", "Comparison_%s_%s" % (shape_name, cmap_id), file_ext=".png") fig.savefig(file_path, transparent=True)
def shapeErrorTable(): cmap_id = 10 colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) L = normalizeVector(np.array([-0.4, 0.5, 0.6])) num_shapes = len(shapeNames()) C_errors = np.zeros((num_shapes, 3)) N_errors = np.zeros((num_shapes, 3)) I_errors = np.zeros((num_shapes, 3)) for si, shape_name in enumerate(shapeNames()): Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) toon_sfs = ToonSFS(L, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=20) toon_sfs.setWeights(w_lap=9.0) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U) C_error_toon, N_error_toon, I_error_toon = computeErrors( L, C0_32F, C_toon, Ng_32F, N_toon, A_8U) C_error_lumo, N_error_lumo, I_error_lumo = computeErrors( L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U) C_error_wu, N_error_wu, I_error_wu = computeErrors( L, C0_32F, C_wu, Ng_32F, N_wu, A_8U) C_errors[si, 0] = np.mean(C_error_toon) C_errors[si, 1] = np.mean(C_error_lumo) C_errors[si, 2] = np.mean(C_error_wu) I_errors[si, 0] = np.mean(I_error_toon) I_errors[si, 1] = np.mean(I_error_lumo) I_errors[si, 2] = np.mean(I_error_wu) N_errors[si, 0] = np.mean(N_error_toon) N_errors[si, 1] = np.mean(N_error_lumo) N_errors[si, 2] = np.mean(N_error_wu) file_path = shapeResultFile("ShapeEstimation", "ShapeShadingError", file_ext=".npy") np.save(file_path, C_errors) file_path = shapeResultFile("ShapeEstimation", "ShapeNormalError", file_ext=".npy") np.save(file_path, N_errors) file_path = shapeResultFile("ShapeEstimation", "ShapeIlluminationErrorShape", file_ext=".npy") np.save(file_path, I_errors) showShapeErrorTable()
def relightingVideo(shape_name="Ogre", cmap_id=3): num_methods = 3 num_rows = 1 num_cols = num_methods + 2 num_lights = 120 w = 10 h = 5 fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("Shading Analysis", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) Lg = normalizeVector(np.array([-0.2, 0.3, 0.5])) Lg_img = lightSphere(Lg) L1 = normalizeVector(np.array([0.5, 0.5, 0.6])) Ls = [ normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ] # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ] Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F) toon_sfs = ToonSFS(Lg, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=100) toon_sfs.setWeights(w_lap=0.2) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U) M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U) M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U) plot_grid.showImage(Lg_img, "Light direction") plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result") #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True) images = [] for i in xrange(48): images.append(figure2numpy(fig)) for li, L in enumerate(Ls): print li fig.clear() fig.suptitle("Relighting", fontsize=font_size) plot_grid.setPlot(1, 1) C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape) C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape) C1_toon = toon_sfs.relighting(L) plot_grid.showImage(lightSphere(L), "Light direction") plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result") images.append(figure2numpy(fig)) file_path = shapeResultFile("Relighting", "Relighting_%s_%s" % (shape_name, cmap_id), file_ext=".wmv") saveVideo(file_path, images)
def materialShapeVariationFigure(): target_colormaps = [23, 3, 12] #target_colormaps = [3, 17] colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps] target_shapes = ["Blob1", "ThreeBox"] shape_names = target_shapes #shape_names = shapeNames()[4:5] num_shapes = len(shape_names) num_colormaps = len(colormap_files) num_rows = num_colormaps num_cols = 6 w = 20 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.15, wspace=0.1) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) L = normalizeVector(np.array([-0.4, 0.5, 0.6])) shape_name = "Blob1" Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data for mi, colormap_file in enumerate(colormap_files): M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) sfs_method = ToonSFS(L, C0_32F, A_8U) sfs_method.setInitialNormal(N0_32F) sfs_method.setNumIterations(iterations=40) sfs_method.setWeights(w_lap=5.0) sfs_method.run() N_32F = sfs_method.normal() C_32F = sfs_method.shading() #C_32F = cv2.bilateralFilter(C_32F, 0, 0.1, 3) C_error = sfs_method.shadingError() C_error[A_8U < 0.5 * np.max(A_8U)] = 0.0 C_error = trim(C_error, A_8U) h, w = A_8U.shape N_error = angleErros(N_32F.reshape(-1, 3), Ng_32F.reshape(-1, 3)).reshape(h, w) N_error[A_8U < 0.5 * np.max(A_8U)] = 0.0 N_error = trim(N_error, A_8U) title = "" if mi == 0: title = "Ground-truth" plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title) title = "" if mi == 0: title = "Our result" plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title) title = "" if mi == 0: title = "Error (shading)" plot_grid.showColorMap(C_error, title, v_min=0, v_max=0.1, with_colorbar=True) title = "" if mi == 0: title = "Ground-truth" plot_grid.showImage(normalToColor(Ng_32F, A_8U), title) title = "" if mi == 0: title = "Our result" plot_grid.showImage(normalToColor(N_32F, A_8U), title) title = "" if mi == 0: title = "Error (shape)" plot_grid.showColorMap(N_error, title, v_min=0, v_max=50.0, with_colorbar=True) #showMaximize() file_path = shapeResultFile("ShapeEstimation", "MaterialShapeEvaluation", file_ext=".pdf") fig.savefig(file_path, transparent=False)
def relightingVideo(shape_name="Ogre", cmap_id=3): num_methods = 3 num_rows = 1 num_cols = num_methods + 2 num_lights = 120 w = 10 h = 5 fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("Shading Analysis", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) Lg = normalizeVector(np.array([-0.2, 0.3, 0.5])) Lg_img = lightSphere(Lg) L1 = normalizeVector(np.array([0.5, 0.5, 0.6])) Ls = [normalizeVector(Lg * (1.0 - t) + t * L1) for t in np.linspace(0.0, 1.0, num_lights) ] # Ls = [normalizeVector(Lg + 1.0 * np.cos(t) * np.array([1, 0, 0]) + 1.0 * np.sin(t) * np.array([0, 1, 0])) for t in np.linspace(0.0, 1.0, num_lights) ] Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F) toon_sfs = ToonSFS(Lg, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=100) toon_sfs.setWeights(w_lap=0.2) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, Lg, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, Lg, N0_32F, A_8U) M_lumo = estimatedReflectance(C0_32F, Lg, N_lumo, A_8U) M_wu = estimatedReflectance(C0_32F, Lg, N_wu, A_8U) plot_grid.showImage(Lg_img, "Light direction") plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result") #plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True) images = [] for i in xrange(48): images.append(figure2numpy(fig)) for li, L in enumerate(Ls): print li fig.clear() fig.suptitle("Relighting", fontsize=font_size) plot_grid.setPlot(1, 1) C1 = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) C1_lumo = M_lumo.shading(LdotN(L, N_lumo).flatten()).reshape(C0_32F.shape) C1_wu = M_wu.shading(LdotN(L, N_wu).flatten()).reshape(C0_32F.shape) C1_toon = toon_sfs.relighting(L) plot_grid.showImage(lightSphere(L), "Light direction") plot_grid.showImage(setAlpha(C1, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C1_lumo, to32F(A_8U)), "Lumo") #plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_wu, to32F(A_8U)), "Lambert assumption") #plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C1_toon, to32F(A_8U)), "Our result") images.append(figure2numpy(fig)) file_path = shapeResultFile("Relighting", "Relighting_%s_%s" %(shape_name, cmap_id), file_ext=".wmv") saveVideo(file_path, images)
def lightEstimationFigure(): target_colormaps = [23, 0, 6, 22, 4, 12] target_shapes = ["Raptor", "Man", "Blob1", "OctaFlower", "Pulley", "Cone"] colormap_files = [colorMapFile(cmap_id) for cmap_id in target_colormaps] shape_names = target_shapes num_rows = len(shape_names) + 1 num_cols = len(colormap_files) + 1 w = 10 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.98, bottom=0.02, hspace=0.05, wspace=0.05) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) Lg = normalizeVector(np.array([-0.2, 0.3, 0.6])) Lg_img = lightSphere(Lg) plot_grid.showImage(Lg_img, "") Ms = [] for colormap_file in colormap_files: M_32F = loadColorMap(colormap_file) Cs_32F = colorMapSphere(Lg, M_32F) plot_grid.showImage(Cs_32F, "") Ms.append(M_32F) L_errors = np.zeros((num_rows, num_cols)) for si, shape_name in enumerate(shape_names): Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data plot_grid.showImage(normalToColor(Ng_32F, A_8U), "") for mi, M_32F in enumerate(Ms): C0_32F = ColorMapShader(M_32F).diffuseShading(Lg, Ng_32F) I_32F = luminance(C0_32F) L = lightEstimation(I_32F, N0_32F, A_8U) L_errors[si, mi] = angleError(Lg, L) L_img = lightSphereColorMap(L, v=L_errors[si, mi], v_min=0, v_max=40) plot_grid.showImage(L_img, "") L_error_min, L_error_max = np.min(L_errors), np.max(L_errors) file_path = shapeResultFile("LightEstimation", "LightEstimationError") fig.savefig(file_path, transparent=True)
def overviewFigure(): cmap_id = 10 colormap_file = colorMapFile(cmap_id) num_rows = 1 num_cols = 5 w = 10 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.02, hspace=0.05, wspace=0.05) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) L = normalizeVector(np.array([-0.4, 0.6, 0.6])) L_img = lightSphere(L) shape_name = "ThreeBox" Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data M_32F = loadColorMap(colormap_file) Cg_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) borders=[0.6, 0.8, 0.92] colors = [np.array([0.2, 0.2, 0.4]), np.array([0.3, 0.3, 0.6]), np.array([0.4, 0.4, 0.8]), np.array([0.5, 0.5, 1.0])] #Cg_32F = ToonShader(borders, colors).diffuseShading(L, Ng_32F) #Cg_32F = cv2.GaussianBlur(Cg_32F, (0,0), 2.0) sfs_method = ToonSFS(L, Cg_32F, A_8U) sfs_method.setInitialNormal(N0_32F) sfs_method.setNumIterations(iterations=40) sfs_method.setWeights(w_lap=10.0) sfs_method.run() N_32F = sfs_method.normal() I_32F = np.float32(np.clip(LdotN(L, N_32F), 0.0, 1.0)) I0_32F = np.float32(np.clip(LdotN(L, N0_32F), 0.0, 1.0)) C_32F = sfs_method.shading() C0_32F = sfs_method.initialShading() M_32F = sfs_method.colorMap().mapImage() L1 = normalizeVector(np.array([0.0, 0.6, 0.6])) L1_img = lightSphere(L1) C1_32F = sfs_method.relighting(L1) L2 = normalizeVector(np.array([0.5, 0.8, 0.6])) L2_img = lightSphere(L2) C2_32F = sfs_method.relighting(L2) N_sil = silhouetteNormal(A_8U, sigma=7.0) N_sil[:, :, 2] = N_sil[:, :, 2] ** 10.0 N_sil = normalizeImage(N_sil) A_sil = 1.0 - N_sil[:, :, 2] A_sil = to8U(A_sil) N_xy = N_sil[:, :, 0] ** 2 + N_sil[:, :, 1] ** 2 A_sil[N_xy < 0.1] = 0 title = "" plot_grid.showImage(setAlpha(Cg_32F, to32F(A_8U)), title) plot_grid.showImage(normalToColor(N0_32F, A_8U), title) plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), title) plot_grid.showImage(normalToColor(N_32F, A_8U), title) plot_grid.showImage(setAlpha(C_32F, to32F(A_8U)), title) # plot_grid.showImage(normalToColor(Ng_32F, A_8U), title) #showMaximize() file_path = shapeResultFile("Overview", "Overview") fig.savefig(file_path, transparent=True) file_path = shapeResultFile("Overview", "Cg") saveRGBA(file_path, setAlpha(Cg_32F, to32F(A_8U))) file_path = shapeResultFile("Overview", "L") saveRGB(file_path, gray2rgb(to8U(L_img))) file_path = shapeResultFile("Overview", "L1") saveRGB(file_path, gray2rgb(to8U(L1_img))) file_path = shapeResultFile("Overview", "L2") saveRGB(file_path, gray2rgb(to8U(L2_img))) file_path = shapeResultFile("Overview", "N0") saveNormal(file_path, N0_32F, A_8U) file_path = shapeResultFile("Overview", "N_sil") saveNormal(file_path, N_sil, A_sil) file_path = shapeResultFile("Overview", "N") saveNormal(file_path, N_32F, A_8U) file_path = shapeResultFile("Overview", "C0") saveRGBA(file_path, setAlpha(C0_32F, to32F(A_8U))) file_path = shapeResultFile("Overview", "C") saveRGBA(file_path, setAlpha(C_32F, to32F(A_8U))) file_path = shapeResultFile("Overview", "C1") saveRGBA(file_path, setAlpha(C1_32F, to32F(A_8U))) file_path = shapeResultFile("Overview", "C2") saveRGBA(file_path, setAlpha(C2_32F, to32F(A_8U))) file_path = shapeResultFile("Overview", "I") saveRGBA(file_path, setAlpha(gray2rgb(I_32F), to32F(A_8U))) file_path = shapeResultFile("Overview", "I0") saveRGBA(file_path, setAlpha(gray2rgb(I0_32F), to32F(A_8U))) file_path = shapeResultFile("Overview", "M") saveRGB(file_path, M_32F)
def methodComparisonFigure(shape_name="ThreeBox", cmap_id=10): num_methods = 3 num_rows = 3 num_cols = 2 * num_methods + 1 w = 20 h = w * num_rows / num_cols fig, axes = plt.subplots(figsize=(w, h)) font_size = 15 fig.subplots_adjust(left=0.02, right=0.98, top=0.96, bottom=0.04, hspace=0.15, wspace=0.1) fig.suptitle("", fontsize=font_size) plot_grid = SubplotGrid(num_rows, num_cols) L = normalizeVector(np.array([-0.4, 0.5, 0.6])) Ng_data = shapeFile(shape_name) Ng_data = loadNormal(Ng_data) Ng_32F, A_8U = Ng_data N0_file = shapeResultFile(result_name="InitialNormal", data_name=shape_name) N0_data = loadNormal(N0_file) N0_32F, A_8U = N0_data A_8U = cv2.bilateralFilter(A_8U, 0, 5, 2) colormap_file = colorMapFile(cmap_id) M_32F = loadColorMap(colormap_file) C0_32F = ColorMapShader(M_32F).diffuseShading(L, Ng_32F) toon_sfs = ToonSFS(L, C0_32F, A_8U) toon_sfs.setInitialNormal(N0_32F) toon_sfs.setNumIterations(iterations=100) toon_sfs.setWeights(w_lap=0.1) toon_sfs.run() N_toon = toon_sfs.normal() C_toon = toon_sfs.shading() C_lumo, N_lumo = lumoSFS(C0_32F, L, N0_32F, A_8U) C_wu, N_wu = wuSFS(C0_32F, L, N0_32F, A_8U) C_error_toon, N_error_toon, I_error_toon = computeErrors(L, C0_32F, C_toon, Ng_32F, N_toon, A_8U) C_error_lumo, N_error_lumo, I_error_lumo = computeErrors(L, C0_32F, C_lumo, Ng_32F, N_lumo, A_8U) C_error_wu, N_error_wu, I_error_wu = computeErrors(L, C0_32F, C_wu, Ng_32F, N_wu, A_8U) plot_grid.showImage(setAlpha(C0_32F, to32F(A_8U)), "Ground-truth") title = "" plot_grid.showImage(setAlpha(C_lumo, to32F(A_8U)), "Lumo") plot_grid.showColorMap(C_error_lumo, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_wu, to32F(A_8U)), "Lambert assumption") plot_grid.showColorMap(C_error_wu, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(setAlpha(C_toon, to32F(A_8U)), "Our result") plot_grid.showColorMap(C_error_toon, title, v_min=0, v_max=0.1, with_colorbar=True) plot_grid.showImage(normalToColor(Ng_32F, A_8U), title) plot_grid.showImage(normalToColor(N_lumo, A_8U), title) plot_grid.showColorMap(N_error_lumo, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(normalToColor(N_wu, A_8U), title) plot_grid.showColorMap(N_error_wu, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(normalToColor(N_toon, A_8U), title) plot_grid.showColorMap(N_error_toon, title, v_min=0, v_max=50.0, with_colorbar=True) plot_grid.showImage(computeIllumination(L, Ng_32F, A_8U), title) plot_grid.showImage(computeIllumination(L, N_lumo, A_8U), title) plot_grid.showColorMap(I_error_lumo, title, v_min=0, v_max=0.2, with_colorbar=True) plot_grid.showImage(computeIllumination(L, N_wu, A_8U), title) plot_grid.showColorMap(I_error_wu, title, v_min=0, v_max=0.2, with_colorbar=True) plot_grid.showImage(computeIllumination(L, N_toon, A_8U), title) plot_grid.showColorMap(I_error_toon, title, v_min=0, v_max=0.2, with_colorbar=True) # showMaximize() file_path = shapeResultFile("ShapeEstimation", "Comparison_%s_%s" %(shape_name, cmap_id), file_ext=".png") fig.savefig(file_path, transparent=True)