Example #1
0
def test_lstm(b_t_ic_hc_otf_sctv, dtype_str, tensor_fn, dev_str, call):
    # smoke test
    b, t, input_channels, hidden_channels, output_true_flat, state_c_true_val = b_t_ic_hc_otf_sctv
    x = ivy.cast(ivy.linspace(ivy.zeros([b, t]), ivy.ones([b, t]), input_channels), 'float32')
    init_h = ivy.ones([b, hidden_channels])
    init_c = ivy.ones([b, hidden_channels])
    kernel = ivy.variable(ivy.ones([input_channels, 4*hidden_channels]))*0.5
    recurrent_kernel = ivy.variable(ivy.ones([hidden_channels, 4*hidden_channels]))*0.5
    output, state_c = ivy.lstm_update(x, init_h, init_c, kernel, recurrent_kernel)
    # type test
    assert ivy.is_array(output)
    assert ivy.is_array(state_c)
    # cardinality test
    assert output.shape == (b, t, hidden_channels)
    assert state_c.shape == (b, hidden_channels)
    # value test
    output_true = np.tile(np.asarray(output_true_flat).reshape((b, t, 1)), (1, 1, hidden_channels))
    state_c_true = np.ones([b, hidden_channels]) * state_c_true_val
    output, state_c = call(ivy.lstm_update, x, init_h, init_c, kernel, recurrent_kernel)
    assert np.allclose(output, output_true, atol=1e-6)
    assert np.allclose(state_c, state_c_true, atol=1e-6)
    # compilation test
    if call in [helpers.torch_call]:
        # this is not a backend implemented function
        pytest.skip()
    helpers.assert_compilable(ivy.lstm_update)
Example #2
0
File: esm.py Project: wx-b/memory
 def empty_memory(self, batch_size, timesteps):
     uniform_pixel_coords = \
         ivy_vision.create_uniform_pixel_coords_image(self._sphere_img_dims, [batch_size, timesteps],
                                                      dev_str=self._dev_str)[..., 0:2]
     empty_memory = {
         'mean':
         ivy.concatenate([uniform_pixel_coords] + [
             ivy.ones([batch_size, timesteps] + self._sphere_img_dims + [1],
                      dev_str=self._dev_str) * self._sphere_depth_prior_val
         ] + [
             ivy.ones([batch_size, timesteps] + self._sphere_img_dims +
                      [self._feat_dim],
                      dev_str=self._dev_str) * self._sphere_feat_prior_val
         ], -1),
         'var':
         ivy.concatenate([
             ivy.ones([batch_size, timesteps] + self._sphere_img_dims + [2],
                      dev_str=self._dev_str) * self._ang_pix_prior_var_val
         ] + [
             ivy.ones([batch_size, timesteps] + self._sphere_img_dims + [1],
                      dev_str=self._dev_str) * self._depth_prior_var_val
         ] + [
             ivy.ones([batch_size, timesteps] + self._sphere_img_dims +
                      [self._feat_dim],
                      dev_str=self._dev_str) * self._feat_prior_var_val
         ], -1)
     }
     return ESMMemory(**empty_memory)
Example #3
0
    def train(self):
        optimizer = ivy.Adam(self._lr, dev_str=self._dev_str)

        for i in range(self._num_iters + 1):

            img_i = np.random.randint(self._images.shape[0])
            target = self._images[img_i]
            cam_geom = self._cam_geoms.slice(img_i)
            rays_o, rays_d = self._get_rays(cam_geom)

            loss, grads = ivy.execute_with_gradients(
                lambda v: self._loss_fn(self._model, rays_o, rays_d, target, v=v), self._model.v)
            self._model.v = optimizer.step(self._model.v, grads)

            if i % self._log_freq == 0 and self._log_freq != -1:
                print('step {}, loss {}'.format(i, ivy.to_numpy(loss).item()))

            if i % self._vis_freq == 0 and self._vis_freq != -1:

                # Render the holdout view for logging
                rays_o, rays_d = self._get_rays(self._test_cam_geom)
                rgb, depth = ivy_vision.render_implicit_features_and_depth(
                    self._model, rays_o, rays_d, near=ivy.ones(self._img_dims, dev_str=self._dev_str) * 2,
                    far=ivy.ones(self._img_dims, dev_str=self._dev_str)*6, samples_per_ray=self._num_samples)
                plt.imsave(os.path.join(self._vis_log_dir, 'img_{}.png'.format(str(i).zfill(3))), ivy.to_numpy(rgb))

        print('Completed Training')
Example #4
0
def test_lstm_layer(b_t_ic_hc_otf_sctv, with_v, with_initial_state, dtype_str,
                    tensor_fn, dev_str, call):
    # smoke test
    b, t, input_channels, hidden_channels, output_true_flat, state_c_true_val = b_t_ic_hc_otf_sctv
    x = ivy.cast(
        ivy.linspace(ivy.zeros([b, t]), ivy.ones([b, t]), input_channels),
        'float32')
    if with_initial_state:
        init_h = ivy.ones([b, hidden_channels])
        init_c = ivy.ones([b, hidden_channels])
        initial_state = ([init_h], [init_c])
    else:
        initial_state = None
    if with_v:
        kernel = ivy.variable(
            ivy.ones([input_channels, 4 * hidden_channels]) * 0.5)
        recurrent_kernel = ivy.variable(
            ivy.ones([hidden_channels, 4 * hidden_channels]) * 0.5)
        v = Container({
            'input': {
                'layer_0': {
                    'w': kernel
                }
            },
            'recurrent': {
                'layer_0': {
                    'w': recurrent_kernel
                }
            }
        })
    else:
        v = None
    lstm_layer = ivy.LSTM(input_channels, hidden_channels, v=v)
    output, (state_h, state_c) = lstm_layer(x, initial_state=initial_state)
    # type test
    assert ivy.is_array(output)
    assert ivy.is_array(state_h[0])
    assert ivy.is_array(state_c[0])
    # cardinality test
    assert output.shape == (b, t, hidden_channels)
    assert state_h[0].shape == (b, hidden_channels)
    assert state_c[0].shape == (b, hidden_channels)
    # value test
    if not with_v or not with_initial_state:
        return
    output_true = np.tile(
        np.asarray(output_true_flat).reshape((b, t, 1)),
        (1, 1, hidden_channels))
    state_c_true = np.ones([b, hidden_channels]) * state_c_true_val
    output, (state_h, state_c) = call(lstm_layer,
                                      x,
                                      initial_state=initial_state)
    assert np.allclose(output, output_true, atol=1e-6)
    assert np.allclose(state_c, state_c_true, atol=1e-6)
    # compilation test
    if call in [helpers.torch_call]:
        # this is not a backend implemented function
        pytest.skip()
    helpers.assert_compilable(ivy.lstm_update)
Example #5
0
def create_trimesh_indices_for_image(batch_shape, image_dims, dev_str='cpu:0'):
    """
    Create triangle mesh for image with given image dimensions

    :param batch_shape: Shape of batch.
    :type batch_shape: sequence of ints
    :param image_dims: Image dimensions.
    :type image_dims: sequence of ints
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc.
    :type dev_str: str, optional
    :return: Triangle mesh indices for image *[batch_shape,h*w*some_other_stuff,3]*
    """

    # shapes as lists
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # other shape specs
    num_batch_dims = len(batch_shape)
    tri_dim = 2 * (image_dims[0] - 1) * (image_dims[1] - 1)
    flat_shape = [1] * num_batch_dims + [tri_dim] + [3]
    tile_shape = batch_shape + [1] * 2

    # 1 x W-1
    t00_ = _ivy.reshape(_ivy.arange(image_dims[1] - 1, dtype_str='float32', dev_str=dev_str), (1, -1))

    # H-1 x 1
    k_ = _ivy.reshape(_ivy.arange(image_dims[0] - 1, dtype_str='float32', dev_str=dev_str), (-1, 1)) * image_dims[1]

    # H-1 x W-1
    t00_ = _ivy.matmul(_ivy.ones((image_dims[0] - 1, 1), dev_str=dev_str), t00_)
    k_ = _ivy.matmul(k_, _ivy.ones((1, image_dims[1] - 1), dev_str=dev_str))

    # (H-1xW-1) x 1
    t00 = _ivy.expand_dims(t00_ + k_, -1)
    t01 = t00 + 1
    t02 = t00 + image_dims[1]
    t10 = t00 + image_dims[1] + 1
    t11 = t01
    t12 = t02

    # (H-1xW-1) x 3
    t0 = _ivy.concatenate((t00, t01, t02), -1)
    t1 = _ivy.concatenate((t10, t11, t12), -1)

    # BS x 2x(H-1xW-1) x 3
    return _ivy.tile(_ivy.reshape(_ivy.concatenate((t0, t1), 0),
                                  flat_shape), tile_shape)
Example #6
0
def test_linear_layer(bs_ic_oc_target, with_v, dtype_str, tensor_fn, dev_str,
                      call):
    # smoke test
    batch_shape, input_channels, output_channels, target = bs_ic_oc_target
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    if with_v:
        np.random.seed(0)
        wlim = (6 / (output_channels + input_channels))**0.5
        w = ivy.variable(
            ivy.array(
                np.random.uniform(-wlim, wlim,
                                  (output_channels, input_channels)),
                'float32'))
        b = ivy.variable(ivy.zeros([output_channels]))
        v = Container({'w': w, 'b': b})
    else:
        v = None
    linear_layer = ivy.Linear(input_channels, output_channels, v=v)
    ret = linear_layer(x)
    # type test
    assert ivy.is_array(ret)
    # cardinality test
    assert ret.shape == tuple(batch_shape + [output_channels])
    # value test
    if not with_v:
        return
    assert np.allclose(call(linear_layer, x), np.array(target))
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not **kwargs
        return
    helpers.assert_compilable(linear_layer)
Example #7
0
def weighted_image_smooth(mean, weights, kernel_dim):
    """
    Smooth an image using weight values from a weight image of the same size.

    :param mean: Image to smooth *[batch_shape,h,w,d]*
    :type mean: array
    :param weights: Variance image, with the variance values of each pixel in the image *[batch_shape,h,w,d]*
    :type weights: array
    :param kernel_dim: The dimension of the kernel
    :type kernel_dim: int
    :return: Image smoothed based on variance image and smoothing kernel.
    """

    # shapes as list
    kernel_shape = [kernel_dim, kernel_dim]
    dim = mean.shape[-1]

    # KW x KW x D
    kernel = _ivy.ones(kernel_shape + [dim])

    # D
    kernel_sum = _ivy.reduce_sum(kernel, [0, 1])[0]

    # BS x H x W x D
    mean_x_weights = mean * weights
    mean_x_weights_sum = _ivy.abs(
        _ivy.depthwise_conv2d(mean_x_weights, kernel, 1, "VALID"))
    sum_of_weights = _ivy.depthwise_conv2d(weights, kernel, 1, "VALID")
    new_mean = mean_x_weights_sum / (sum_of_weights + MIN_DENOMINATOR)

    new_weights = sum_of_weights / (kernel_sum + MIN_DENOMINATOR)

    # BS x H x W x D,  # BS x H x W x D
    return new_mean, new_weights
Example #8
0
    def as_identity(batch_shape):
        """
        Return camera intrinsics object with array attributes as either zeros or identity matrices.

        :param batch_shape: Batch shape for each geometric array attribute
        :type batch_shape: sequence of ints
        :return: New camera intrinsics object, with each entry as either zeros or identity matrices.
        """
        batch_shape = list(batch_shape)
        focal_lengths = _ivy.ones(batch_shape + [2])
        persp_angles = _ivy.ones(batch_shape + [2])
        pp_offsets = _ivy.zeros(batch_shape + [2])
        calib_mats = _ivy.identity(3, batch_shape=batch_shape)
        inv_calib_mats = _ivy.identity(3, batch_shape=batch_shape)
        return __class__(focal_lengths, persp_angles, pp_offsets, calib_mats,
                         inv_calib_mats)
Example #9
0
    def as_identity(batch_shape):
        """
        Return primitive scene object with array attributes as either zeros or identity matrices.

        :param batch_shape: Batch shape for each geometric array attribute
        :type batch_shape: sequence of ints
        :return: New primitive scene object, with each entry as either zeros or identity matrices.
        """
        batch_shape = list(batch_shape)
        sphere_positions = _ivy.identity(4, batch_shape=batch_shape)[...,
                                                                     0:3, :]
        sphere_radii = _ivy.ones(batch_shape + [1])
        cuboid_ext_mats = _ivy.identity(4, batch_shape=batch_shape)[...,
                                                                    0:3, :]
        cuboid_dims = _ivy.ones(batch_shape + [3])
        return __class__(sphere_positions, sphere_radii, cuboid_ext_mats,
                         cuboid_dims)
Example #10
0
 def __init__(self, base_inv_ext_mat=None):
     a_s = ivy.array([0.5, 0.5])
     d_s = ivy.array([0., 0.])
     alpha_s = ivy.array([0., 0.])
     dh_joint_scales = ivy.ones((2, ))
     dh_joint_offsets = ivy.array([-np.pi / 2, 0.])
     super().__init__(a_s, d_s, alpha_s, dh_joint_scales,
                      dh_joint_offsets, base_inv_ext_mat)
Example #11
0
def get_fundamental_matrix(full_mat1,
                           full_mat2,
                           camera_center1=None,
                           pinv_full_mat1=None,
                           batch_shape=None,
                           dev_str=None):
    """
    Compute fundamental matrix :math:`\mathbf{F}\in\mathbb{R}^{3×3}` between two cameras, given their extrinsic
    matrices :math:`\mathbf{E}_1\in\mathbb{R}^{3×4}` and :math:`\mathbf{E}_2\in\mathbb{R}^{3×4}`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=262>`_
    bottom of page 244, section 9.2.2, equation 9.1

    :param full_mat1: Frame 1 full projection matrix *[batch_shape,3,4]*
    :type full_mat1: array
    :param full_mat2: Frame 2 full projection matrix *[batch_shape,3,4]*
    :type full_mat2: array
    :param camera_center1: Frame 1 camera center, inferred from full_mat1 if None *[batch_shape,3,1]*
    :type camera_center1: array, optional
    :param pinv_full_mat1: Frame 1 full projection matrix pseudo-inverse, inferred from full_mat1 if None *[batch_shape,4,3]*
    :type pinv_full_mat1: array, optional
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: Fundamental matrix connecting frames 1 and 2 *[batch_shape,3,3]*
    """

    if batch_shape is None:
        batch_shape = full_mat1.shape[:-2]

    if dev_str is None:
        dev_str = _ivy.dev_str(full_mat1)

    # shapes as list
    batch_shape = list(batch_shape)

    if camera_center1 is None:
        inv_full_mat1 = _ivy.inv(
            _ivy_mech.make_transformation_homogeneous(full_mat1, batch_shape,
                                                      dev_str))[..., 0:3, :]
        camera_center1 = _ivy_svg.inv_ext_mat_to_camera_center(inv_full_mat1)

    if pinv_full_mat1 is None:
        pinv_full_mat1 = _ivy.pinv(full_mat1)

    # BS x 4 x 1
    camera_center1_homo = _ivy.concatenate(
        (camera_center1, _ivy.ones(batch_shape + [1, 1], dev_str=dev_str)), -2)

    # BS x 3
    e2 = _ivy.matmul(full_mat2, camera_center1_homo)[..., -1]

    # BS x 3 x 3
    e2_skew_symmetric = _ivy.linalg.vector_to_skew_symmetric_matrix(e2)

    # BS x 3 x 3
    return _ivy.matmul(e2_skew_symmetric, _ivy.matmul(full_mat2,
                                                      pinv_full_mat1))
Example #12
0
def test_sgd_optimizer(bs_ic_oc_target, with_v, dtype_str, tensor_fn, dev_str,
                       call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    batch_shape, input_channels, output_channels, target = bs_ic_oc_target
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    if with_v:
        np.random.seed(0)
        wlim = (6 / (output_channels + input_channels))**0.5
        w = ivy.variable(
            ivy.array(
                np.random.uniform(-wlim, wlim,
                                  (output_channels, input_channels)),
                'float32'))
        b = ivy.variable(ivy.zeros([output_channels]))
        v = Container({'w': w, 'b': b})
    else:
        v = None
    linear_layer = ivy.Linear(input_channels, output_channels, v=v)

    def loss_fn(v_):
        out = linear_layer(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # optimizer
    optimizer = ivy.SGD()

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, linear_layer.v)
        linear_layer.v = optimizer.step(linear_layer.v, grads)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    assert ivy.reduce_max(ivy.abs(grads.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.w)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not **kwargs
        return
    helpers.assert_compilable(loss_fn)
Example #13
0
    def save_video(self):
        if not self._interactive:
            return
        trans_t = lambda t: ivy.array([
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, t],
            [0, 0, 0, 1],
        ], 'float32')

        rot_phi = lambda phi: ivy.array([
            [1, 0, 0, 0],
            [0, np.cos(phi), -np.sin(phi), 0],
            [0, np.sin(phi), np.cos(phi), 0],
            [0, 0, 0, 1],
        ], 'float32')

        rot_theta = lambda th_: ivy.array([
            [np.cos(th_), 0, -np.sin(th_), 0],
            [0, 1, 0, 0],
            [np.sin(th_), 0, np.cos(th_), 0],
            [0, 0, 0, 1],
        ], 'float32')

        def pose_spherical(theta, phi, radius):
            c2w_ = trans_t(radius)
            c2w_ = rot_phi(phi / 180. * np.pi) @ c2w_
            c2w_ = rot_theta(theta / 180. * np.pi) @ c2w_
            c2w_ = ivy.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]], 'float32') @ c2w_
            c2w_ = c2w_ @ ivy.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], 'float32')
            return c2w_

        frames = []
        for th in tqdm(np.linspace(0., 360., 120, endpoint=False)):
            c2w = ivy.to_dev(pose_spherical(th, -30., 4.), self._dev_str)
            cam_geom = ivy_vision.inv_ext_mat_and_intrinsics_to_cam_geometry_object(
                c2w[0:3], self._intrinsics.slice(0))
            rays_o, rays_d = self._get_rays(cam_geom)
            rgb, depth = ivy_vision.render_implicit_features_and_depth(
                self._model, rays_o, rays_d, near=ivy.ones(self._img_dims, dev_str=self._dev_str) * 2,
                far=ivy.ones(self._img_dims, dev_str=self._dev_str) * 6, samples_per_ray=self._num_samples)
            frames.append((255 * np.clip(ivy.to_numpy(rgb), 0, 1)).astype(np.uint8))
        import imageio
        vid_filename = 'nerf_video.mp4'
        imageio.mimwrite(vid_filename, frames, fps=30, quality=7)
Example #14
0
def _get_dummy_obs(batch_size, num_frames, num_cams, image_dims, num_feature_channels, dev_str='cpu', ones=False,
                   empty=False):

    uniform_pixel_coords =\
        ivy_vision.create_uniform_pixel_coords_image(image_dims, [batch_size, num_frames], dev_str=dev_str)

    img_meas = dict()
    for i in range(num_cams):
        validity_mask = ivy.ones([batch_size, num_frames] + image_dims + [1], dev_str=dev_str)
        if ones:
            img_mean = ivy.concatenate((uniform_pixel_coords[..., 0:2], ivy.ones(
                [batch_size, num_frames] + image_dims + [1 + num_feature_channels], dev_str=dev_str)), -1)
            img_var = ivy.ones(
                     [batch_size, num_frames] + image_dims + [3 + num_feature_channels], dev_str=dev_str)*1e-3
            pose_mean = ivy.zeros([batch_size, num_frames, 6], dev_str=dev_str)
            pose_cov = ivy.ones([batch_size, num_frames, 6, 6], dev_str=dev_str)*1e-3
        else:
            img_mean = ivy.concatenate((uniform_pixel_coords[..., 0:2], ivy.random_uniform(
                1e-3, 1, [batch_size, num_frames] + image_dims + [1 + num_feature_channels], dev_str=dev_str)), -1)
            img_var = ivy.random_uniform(
                     1e-3, 1, [batch_size, num_frames] + image_dims + [3 + num_feature_channels], dev_str=dev_str)
            pose_mean = ivy.random_uniform(1e-3, 1, [batch_size, num_frames, 6], dev_str=dev_str)
            pose_cov = ivy.random_uniform(1e-3, 1, [batch_size, num_frames, 6, 6], dev_str=dev_str)
        if empty:
            img_var = ivy.ones_like(img_var) * 1e12
            validity_mask = ivy.zeros_like(validity_mask)
        img_meas['dummy_cam_{}'.format(i)] =\
            {'img_mean': img_mean,
             'img_var': img_var,
             'validity_mask': validity_mask,
             'pose_mean': pose_mean,
             'pose_cov': pose_cov,
             'cam_rel_mat': ivy.identity(4, batch_shape=[batch_size, num_frames], dev_str=dev_str)[..., 0:3, :]}

    if ones:
        control_mean = ivy.zeros([batch_size, num_frames, 6], dev_str=dev_str)
        control_cov = ivy.ones([batch_size, num_frames, 6, 6], dev_str=dev_str)*1e-3
    else:
        control_mean = ivy.random_uniform(1e-3, 1, [batch_size, num_frames, 6], dev_str=dev_str)
        control_cov = ivy.random_uniform(1e-3, 1, [batch_size, num_frames, 6, 6], dev_str=dev_str)
    return Container({'img_meas': img_meas,
                      'control_mean': control_mean,
                      'control_cov': control_cov,
                      'agent_rel_mat': ivy.identity(4, batch_shape=[batch_size, num_frames],
                                                    dev_str=dev_str)[..., 0:3, :]})
Example #15
0
def test_module_w_none_attribute(bs_ic_oc, dev_str, call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    batch_shape, input_channels, output_channels = bs_ic_oc
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    module = ModuleWithNoneAttribute()
Example #16
0
    def test_exception(self, dev_str, dtype_str, call):
        input_ = ivy.ones((1, 1, 3, 4), dev_str=dev_str, dtype_str=dtype_str)
        kernel = ivy.ones((3, 3), dev_str=dev_str, dtype_str=dtype_str)

        with pytest.raises(ValueError):
            test = ivy.ones((2, 3, 4), dev_str=dev_str, dtype_str=dtype_str)
            assert black_hat(test, kernel)

        with pytest.raises(ValueError):
            test = ivy.ones((2, 3, 4), dev_str=dev_str, dtype_str=dtype_str)
            assert black_hat(input_, test)

        if call is not helpers.torch_call:
            return

        with pytest.raises(TypeError):
            assert black_hat([0.], kernel)

        with pytest.raises(TypeError):
            assert black_hat(input_, [0.])
Example #17
0
def test_stack_images(shp_n_num_n_ar_n_newshp, dev_str, call):
    # smoke test
    shape, num, ar, new_shape = shp_n_num_n_ar_n_newshp
    xs = [ivy.ones(shape)] * num
    ret = ivy.stack_images(xs, ar)
    # type test
    assert ivy.is_array(ret)
    # cardinality test
    assert ret.shape == new_shape
    # compilation test
    helpers.assert_compilable(ivy.stack_images)
Example #18
0
def ds_pixel_to_world_coords(ds_pixel_coords, inv_full_mat, batch_shape=None, image_dims=None, dev_str=None):
    """
    Get world-centric homogeneous co-ordinates image :math:`\mathbf{X}_w\in\mathbb{R}^{h×w×4}` from depth scaled
    homogeneous pixel co-ordinates image :math:`\mathbf{X}_p\in\mathbb{R}^{h×w×3}`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=173>`_
    combination of page 155, matrix inverse of equation 6.3, and matrix inverse of page 156, equation 6.6

    :param ds_pixel_coords: Depth scaled homogeneous pixel co-ordinates image: *[batch_shape,h,w,3]*
    :type ds_pixel_coords: array
    :param inv_full_mat: Inverse full projection matrix *[batch_shape,3,4]*
    :type inv_full_mat: array
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param image_dims: Image dimensions. Inferred from inputs in None.
    :type image_dims: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: World-centric homogeneous co-ordinates image *[batch_shape,h,w,4]*
    """

    if batch_shape is None:
        batch_shape = ds_pixel_coords.shape[:-3]

    if image_dims is None:
        image_dims = ds_pixel_coords.shape[-3:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(ds_pixel_coords)

    # shapes as list
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # BS x H x W x 4
    ds_pixel_coords = _ivy.concatenate((ds_pixel_coords, _ivy.ones(batch_shape + image_dims + [1], dev_str=dev_str)), -1)

    # BS x H x W x 3
    world_coords = _ivy_pg.transform(ds_pixel_coords, inv_full_mat, batch_shape, image_dims)

    # BS x H x W x 4
    return _ivy.concatenate((world_coords, _ivy.ones(batch_shape + image_dims + [1], dev_str=dev_str)), -1)
Example #19
0
    def test_jit(self, dev_str, dtype_str, call):
        op = top_hat
        if call in [helpers.jnp_call, helpers.torch_call]:
            # compiled jax tensors do not have device_buffer attribute, preventing device info retrieval,
            # pytorch scripting does not support .type() casting, nor Union or Numbers for type hinting
            pytest.skip()
        op_compiled = ivy.compile_fn(op)

        input_ = ivy.cast(ivy.random_uniform(shape=(1, 2, 7, 7), dev_str=dev_str), dtype_str)
        kernel = ivy.ones((3, 3), dev_str=dev_str, dtype_str=dtype_str)

        actual = call(op_compiled, input_, kernel)
        expected = call(op, input_, kernel)

        assert np.allclose(actual, expected)
Example #20
0
 def _create_variables(self, dev_str):
     vars_dict = dict()
     wlim = (6 / (2 * self._memory_vector_dim)) ** 0.5
     vars_dict['read_weights'] =\
         dict(zip(['w_' + str(i) for i in range(self._read_head_num)],
                  [ivy.variable(ivy.random_uniform(-wlim, wlim, [self._memory_vector_dim, ], dev_str=dev_str))
                   for _ in range(self._read_head_num)]))
     wlim = (6 / (2 * self._memory_size)) ** 0.5
     vars_dict['write_weights'] =\
         dict(zip(['w_' + str(i) for i in range(self._read_head_num + self._write_head_num)],
                  [ivy.variable(ivy.random_uniform(-wlim, wlim, [self._memory_size, ], dev_str=dev_str))
                   for _ in range(self._read_head_num + self._write_head_num)]))
     vars_dict['memory'] = ivy.variable(
         ivy.ones([self._memory_size, self._memory_vector_dim], dev_str=dev_str) * self._init_value)
     return vars_dict
Example #21
0
def test_module_training(bs_ic_oc, dev_str, call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    batch_shape, input_channels, output_channels = bs_ic_oc
    x = ivy.cast(
        ivy.linspace(ivy.zeros(batch_shape), ivy.ones(batch_shape),
                     input_channels), 'float32')
    module = TrainableModule(input_channels, output_channels)

    def loss_fn(v_):
        out = module(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, module.v)
        module.v = ivy.gradient_descent_update(module.v, grads, 1e-3)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    assert ivy.reduce_max(ivy.abs(grads.linear0.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear0.w)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear1.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear1.w)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear2.b)) > 0
    assert ivy.reduce_max(ivy.abs(grads.linear2.w)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not support **kwargs
        return
    helpers.assert_compilable(loss_fn)
Example #22
0
def ds_pixel_to_ds_pixel_coords(ds_pixel_coords1,
                                cam1to2_full_mat,
                                batch_shape=None,
                                image_dims=None,
                                dev_str=None):
    """
    Transform depth scaled homogeneous pixel co-ordinates image in first camera frame
    :math:`\mathbf{X}_{p1}\in\mathbb{R}^{h×w×3}` to depth scaled homogeneous pixel co-ordinates image in second camera
    frame :math:`\mathbf{X}_{p2}\in\mathbb{R}^{h×w×3}`, given camera to camera projection matrix
    :math:`\mathbf{P}_{1→2}\in\mathbb{R}^{3×4}`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=174>`_

    :param ds_pixel_coords1: Depth scaled homogeneous pixel co-ordinates image in frame 1 *[batch_shape,h,w,3]*
    :type ds_pixel_coords1: array
    :param cam1to2_full_mat: Camera1-to-camera2 full projection matrix *[batch_shape,3,4]*
    :type cam1to2_full_mat: array
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param image_dims: Image dimensions. Inferred from inputs in None.
    :type image_dims: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: Depth scaled homogeneous pixel co-ordinates image in frame 2 *[batch_shape,h,w,3]*
    """

    if batch_shape is None:
        batch_shape = ds_pixel_coords1.shape[:-3]

    if image_dims is None:
        image_dims = ds_pixel_coords1.shape[-3:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(ds_pixel_coords1)

    # shapes as list
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # BS x H x W x 4
    pixel_coords_homo = _ivy.concatenate(
        (ds_pixel_coords1,
         _ivy.ones(batch_shape + image_dims + [1], dev_str=dev_str)), -1)

    # BS x H x W x 3
    return _ivy_pg.transform(pixel_coords_homo, cam1to2_full_mat, batch_shape,
                             image_dims)
Example #23
0
def cam_to_cam_coords(cam_coords1,
                      cam1to2_ext_mat,
                      batch_shape=None,
                      image_dims=None,
                      dev_str=None):
    """
    Transform camera-centric homogeneous co-ordinates image for camera 1 :math:`\mathbf{X}_{c1}\in\mathbb{R}^{h×w×4}` to
    camera-centric homogeneous co-ordinates image for camera 2 :math:`\mathbf{X}_{c2}\in\mathbb{R}^{h×w×4}`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=174>`_

    :param cam_coords1: Camera-centric homogeneous co-ordinates image in frame 1 *[batch_shape,h,w,4]*
    :type cam_coords1: array
    :param cam1to2_ext_mat: Camera1-to-camera2 extrinsic projection matrix *[batch_shape,3,4]*
    :type cam1to2_ext_mat: array
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param image_dims: Image dimensions. Inferred from inputs in None.
    :type image_dims: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: Depth scaled homogeneous pixel co-ordinates image in frame 2 *[batch_shape,h,w,3]*
    """

    if batch_shape is None:
        batch_shape = cam_coords1.shape[:-3]

    if image_dims is None:
        image_dims = cam_coords1.shape[-3:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(cam_coords1)

    # shapes as list
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # BS x H x W x 3
    cam_coords2 = _ivy_pg.transform(cam_coords1, cam1to2_ext_mat, batch_shape,
                                    image_dims)

    # BS x H x W x 4
    return _ivy.concatenate(
        (cam_coords2, _ivy.ones(batch_shape + image_dims + [1],
                                dev_str=dev_str)), -1)
Example #24
0
def focal_lengths_and_pp_offsets_to_calib_mat(focal_lengths, pp_offsets, batch_shape=None, dev_str=None):
    """
    Compute calibration matrix :math:`\mathbf{K}\in\mathbb{R}^{3×3}` from focal lengths :math:`f_x, f_y` and
    principal-point offsets :math:`p_x, p_y`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=173>`_
    page 155, section 6.1, equation 6.4

    :param focal_lengths: Focal lengths *[batch_shape,2]*
    :type focal_lengths: array
    :param pp_offsets: Principal-point offsets *[batch_shape,2]*
    :type pp_offsets: array
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: Calibration matrix *[batch_shape,3,3]*
    """

    if batch_shape is None:
        batch_shape = focal_lengths.shape[:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(focal_lengths)

    # shapes as list
    batch_shape = list(batch_shape)

    # BS x 1 x 1
    zeros = _ivy.zeros(batch_shape + [1, 1], dev_str=dev_str)
    ones = _ivy.ones(batch_shape + [1, 1], dev_str=dev_str)

    # BS x 2 x 1
    focal_lengths_reshaped = _ivy.expand_dims(focal_lengths, -1)
    pp_offsets_reshaped = _ivy.expand_dims(pp_offsets, -1)

    # BS x 1 x 3
    row1 = _ivy.concatenate((focal_lengths_reshaped[..., 0:1, :], zeros, pp_offsets_reshaped[..., 0:1, :]), -1)
    row2 = _ivy.concatenate((zeros, focal_lengths_reshaped[..., 1:2, :], pp_offsets_reshaped[..., 1:2, :]), -1)
    row3 = _ivy.concatenate((zeros, zeros, ones), -1)

    # BS x 3 x 3
    return _ivy.concatenate((row1, row2, row3), -2)
Example #25
0
def sphere_to_cam_coords(sphere_coords, forward_facing_z=True, batch_shape=None, image_dims=None, dev_str=None):
    """
    Convert camera-centric ego-sphere polar co-ordinates image :math:`\mathbf{S}_c\in\mathbb{R}^{h×w×3}` to
    camera-centric homogeneous cartesian co-ordinates image :math:`\mathbf{X}_c\in\mathbb{R}^{h×w×4}`.\n
    `[reference] <https://en.wikipedia.org/wiki/Spherical_coordinate_system#Cartesian_coordinates>`_

    :param sphere_coords: Camera-centric ego-sphere polar co-ordinates image *[batch_shape,h,w,3]*
    :type sphere_coords: array
    :param forward_facing_z: Whether to use reference frame so z is forward facing. Default is False.
    :type forward_facing_z: bool, optional
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param image_dims: Image dimensions. Inferred from inputs in None.
    :type image_dims: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: *Camera-centric homogeneous cartesian co-ordinates image *[batch_shape,h,w,4]*
    """

    if batch_shape is None:
        batch_shape = sphere_coords.shape[:-3]

    if image_dims is None:
        image_dims = sphere_coords.shape[-3:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(sphere_coords)

    # shapes as list
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # BS x H x W x 3
    cam_coords = _ivy_mec.polar_to_cartesian_coords(sphere_coords)
    if forward_facing_z:
        cam_coords = _ivy.concatenate(
            (cam_coords[..., 1:2], cam_coords[..., 2:3], cam_coords[..., 0:1]), -1)

    # BS x H x W x 4
    return _ivy.concatenate((cam_coords, _ivy.ones(batch_shape + image_dims + [1], dev_str=dev_str)), -1)
Example #26
0
    def __init__(self, base_inv_ext_mat=None):
        """
        Initialize FRANKA EMIKA Panda robot manipulator instance.
        Denavit–Hartenberg parameters inferred from FRANKA EMIKA online API.
        Screenshot included in this module for reference.

        :param base_inv_ext_mat: Inverse extrinsic matrix of the robot base *[3,4]*
        :type base_inv_ext_mat: array, optional
        """

        # dh params
        # panda_DH_params.png
        # taken from https://frankaemika.github.io/docs/control_parameters.html

        a_s = _ivy.array([0., 0., 0.0825, -0.0825, 0., 0.088, 0.])
        d_s = _ivy.array([0.333, 0., 0.316, 0., 0.384, 0., 0.107])
        alpha_s = _ivy.array(
            [-_math.pi / 2, _math.pi / 2, _math.pi / 2, -_math.pi / 2, _math.pi / 2, _math.pi / 2, 0.])
        dh_joint_scales = _ivy.ones((7,))
        dh_joint_offsets = _ivy.zeros((7,))

        super().__init__(a_s, d_s, alpha_s, dh_joint_scales, dh_joint_offsets, base_inv_ext_mat)
Example #27
0
def cam_to_world_coords(coords_wrt_cam, inv_ext_mat, batch_shape=None, image_dims=None, dev_str=None):
    """
    Get world-centric homogeneous co-ordinates image :math:`\mathbf{X}_w\in\mathbb{R}^{h×w×4}` from camera-centric
    homogeneous co-ordinates image :math:`\mathbf{X}_c\in\mathbb{R}^{h×w×4}`.\n
    `[reference] <localhost:63342/ivy/docs/source/references/mvg_textbook.pdf#page=174>`_
    matrix inverse of page 156, equation 6.6

    :param coords_wrt_cam: Camera-centric homogeneous co-ordinates image *[batch_shape,h,w,4]*
    :type coords_wrt_cam: array
    :param inv_ext_mat: Inverse extrinsic matrix *[batch_shape,3,4]*
    :type inv_ext_mat: array
    :param batch_shape: Shape of batch. Inferred from inputs if None.
    :type batch_shape: sequence of ints, optional
    :param image_dims: Image dimensions. Inferred from inputs in None.
    :type image_dims: sequence of ints, optional
    :param dev_str: device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None.
    :type dev_str: str, optional
    :return: World-centric homogeneous co-ordinates image *[batch_shape,h,w,4]*
    """

    if batch_shape is None:
        batch_shape = coords_wrt_cam.shape[:-3]

    if image_dims is None:
        image_dims = coords_wrt_cam.shape[-3:-1]

    if dev_str is None:
        dev_str = _ivy.dev_str(coords_wrt_cam)

    # shapes as list
    batch_shape = list(batch_shape)
    image_dims = list(image_dims)

    # BS x H x W x 3
    world_coords = _ivy_pg.transform(coords_wrt_cam, inv_ext_mat, batch_shape, image_dims)

    # BS x H x W x 4
    return _ivy.concatenate((world_coords, _ivy.ones(batch_shape + image_dims + [1], dev_str=dev_str)), -1)
Example #28
0
    def __init__(self, data_loader_spec):
        super().__init__(data_loader_spec)

        # dataset size
        self._num_examples = self._spec.dataset_spec.num_examples

        # counter
        self._i = 0

        # load vector data
        vector_dim = self._spec.dataset_spec.vector_dim
        self._targets = ivy.zeros((self._num_examples, vector_dim, 1))

        # load image data
        image_dims = self._spec.dataset_spec.image_dims
        self._input = ivy.ones(
            (self._num_examples, image_dims[0], image_dims[1], 3))

        self._training_data = ivy.Container(targets=self._targets,
                                            input=self._input)
        self._validation_data = ivy.Container(targets=self._targets,
                                              input=self._input)
        self._data = ivy.Container(training=self._training_data,
                                   validation=self._validation_data)
Example #29
0
 def test_cardinality(self, dev_str, dtype_str, call, shape, kernel):
     img = ivy.ones(shape, dtype_str=dtype_str, dev_str=dev_str)
     krnl = ivy.ones(kernel, dtype_str=dtype_str, dev_str=dev_str)
     assert black_hat(img, krnl).shape == shape
Example #30
0
def test_lstm_layer_training(b_t_ic_hc_otf_sctv, with_v, dtype_str, tensor_fn,
                             dev_str, call):
    # smoke test
    if call is helpers.np_call:
        # NumPy does not support gradients
        pytest.skip()
    # smoke test
    b, t, input_channels, hidden_channels, output_true_flat, state_c_true_val = b_t_ic_hc_otf_sctv
    x = ivy.cast(
        ivy.linspace(ivy.zeros([b, t]), ivy.ones([b, t]), input_channels),
        'float32')
    if with_v:
        kernel = ivy.variable(
            ivy.ones([input_channels, 4 * hidden_channels]) * 0.5)
        recurrent_kernel = ivy.variable(
            ivy.ones([hidden_channels, 4 * hidden_channels]) * 0.5)
        v = Container({
            'input': {
                'layer_0': {
                    'w': kernel
                }
            },
            'recurrent': {
                'layer_0': {
                    'w': recurrent_kernel
                }
            }
        })
    else:
        v = None
    lstm_layer = ivy.LSTM(input_channels, hidden_channels, v=v)

    def loss_fn(v_):
        out, (state_h, state_c) = lstm_layer(x, v=v_)
        return ivy.reduce_mean(out)[0]

    # train
    loss_tm1 = 1e12
    loss = None
    grads = None
    for i in range(10):
        loss, grads = ivy.execute_with_gradients(loss_fn, lstm_layer.v)
        lstm_layer.v = ivy.gradient_descent_update(lstm_layer.v, grads, 1e-3)
        assert loss < loss_tm1
        loss_tm1 = loss

    # type test
    assert ivy.is_array(loss)
    assert isinstance(grads, ivy.Container)
    # cardinality test
    if call is helpers.mx_call:
        # mxnet slicing cannot reduce dimension to zero
        assert loss.shape == (1, )
    else:
        assert loss.shape == ()
    # value test
    for key, val in grads.to_iterator():
        assert ivy.reduce_max(ivy.abs(val)) > 0
    # compilation test
    if call is helpers.torch_call:
        # pytest scripting does not **kwargs
        return
    helpers.assert_compilable(loss_fn)