xs_lt_n6 = [] ys_lt_n6 = [] # 4) Fit Model with open(args.data, "r") as f: file_lines = f.readlines() for line in file_lines: #print( "reading " + str( line ) ) split = line.split("\n")[0].split(",") my_assert_equals_thrower("split.length", len(split), 2) try: cpp_structs = jack_mouse_test.read_mouse_data(split[0], split[1]) source_input = cpp_structs[0] ray_input = cpp_structs[1] output = cpp_structs[2] #source_input, ray_input, output = generate_data_from_files( line, False ) except AssertError: continue predictions = model.predict(x=[source_input, ray_input]) my_assert_equals_thrower("len( predictions )", len(predictions), len(output)) for i in range(0, len(predictions)): ''' denorm_val=output[ i ][ 0 ] norm_val = denorm_val if norm_val > 1: norm_val = norm_val**0.75
for x in range(0, len(output_no_resid)): my_assert_equals_thrower("len(output_no_resid[x])", len(output_no_resid[x]), 1) val = output_no_resid[x][0] #Stunt large values if (val > 1): val = val**0.75 #subtract mean of -2: val += 2.0 #divide by span of 3: val /= 3.0 return source_input_no_resid, ray_input_no_resid, output_no_resid t0 = time.time() cpp_structs = jack_mouse_test.read_mouse_data(input_file_path, output_file_path) t1 = time.time() py_res_input, py_ray_input, py_output = generate_data_from_files( input_file_path, output_file_path, False) t2 = time.time() if (len(cpp_structs) < 3): print("CPP found an exception") exit(cpp_structs[0]) cpp_res_input = cpp_structs[0] cpp_ray_input = cpp_structs[1] cpp_output = cpp_structs[2] #print( cpp_output.shape ) #print( py_output.shape ) #exit( 0 )