def get_data(self, url): ''' return the data needed. url is from get_roms.get_url(starttime, endtime) ''' data = jata.get_nc_data(url, 'lon_rho', 'lat_rho', 'mask_rho','u', 'v', 'h', 's_rho') return data
def get_data(self,url): ''' ??? Retrieves data? ''' self.data = jata.get_nc_data(url,'lon','lat','latc','lonc', 'u','v','siglay','h') return self.data
def get_data(self, url): ''' return the data needed. url is from water_roms.get_url(starttime, endtime) ''' data = jata.get_nc_data(url, 'lon_rho', 'lat_rho', 'mask_rho','u', 'v', 'h', 's_rho') return data
def get_data(self, url): ''' return the data needed. url is from water_roms.get_url(starttime, endtime) ''' data = jata.get_nc_data(url, 'lon_rho', 'lat_rho', 'temp','h','s_rho', 'ocean_time') return data
def get_data(self, url): self.data = jata.get_nc_data(url, 'lon', 'lat', 'latc', 'lonc', 'u', 'v', 'siglay', 'h', 'time', 'temp') return self.data
import numpy as np import matplotlib.pyplot as plt import jata from mpl_toolkits.basemap import Basemap url = 'http://www.smast.umassd.edu:8080/thredds/dodsC/fvcom/hindcasts/30yr_gom3?lat[0:1:48450],latc[0:1:90414],lon[0:1:48450],lonc[0:1:90414]' data = jata.get_nc_data(url, 'lon', 'lat', 'lonc', 'latc') lonsize = [-76, -55] latsize = [35, 46.5] interval_lat, interval_lon = 0.5, 0.5 fig = plt.figure() ax = plt.subplot(111) dmap = Basemap(projection='cyl', llcrnrlat=min(latsize)-0.01, urcrnrlat=max(latsize)+0.01, llcrnrlon=min(lonsize)-0.01, urcrnrlon=max(lonsize)+0.01, resolution='h',ax=ax) dmap.drawparallels(np.arange(int(min(latsize)), int(max(latsize))+1,interval_lat), labels=[1,0,0,0]) dmap.drawmeridians(np.arange(int(min(lonsize))-1, int(max(lonsize))+1,interval_lon), labels=[0,0,0,1]) dmap.drawcoastlines() dmap.fillcontinents(color='grey') dmap.drawmapboundary() # ax.plot(data['lon'], data['lat'], '.', label='nodal') ax.plot(data['lonc'], data['latc'], '.', label='zonal')
def get_data(self, url): data = jata.get_nc_data(url, 'h', 'lat_rho', 'lon_rho', 'temp', 's_rho','ocean_time') return data
ax2.plot(dtime, dtemp) plt.title('lon:{0},lat:{1},From:{2}'.format(lon, lat, starttime)) plt.show() ''' tempobj = temp() url = tempobj.get_url(starttime, endtime) dtemp, dtime = tempobj.templine(x, y, url) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(dtime, dtemp) plt.show() ''' starttime, endtime= datetime(2006,05,19), datetime(2006,05,21) depth = -1 url = 'http://tds.marine.rutgers.edu:8080/thredds/dodsC/roms/espresso/2013_da/avg_Best/ESPRESSO_Real-Time_v2_Averages_Best_Available_best.ncd?h[0:1:81][0:1:129],temp[0:1:307][0:1:35][0:1:81][0:1:129],lon_rho[0:1:81][0:1:129],lat_rho[0:1:81][0:1:129]' data = jata.get_nc_data(url, 'lon_rho', 'lat_rho', 'h', 'temp') lonsize = np.amin(data['lon_rho'][:])-1, np.amax(data['lon_rho'][:])+1 latsize = np.amin(data['lat_rho'][:])-1, np.amax(data['lat_rho'][:])+1 ''' fig = plt.figure() ax = fig.add_subplot(111) x = range(1, 309) ax.plot(range(1, 309), data['temp'][:, 0, 25, 35]) # cid = fig.canvas.mpl_connect('button_press_event', left_button_down) # plt.xticks(x, range(5,308,50)) plt.show() ''' fig = plt.figure() ax = plt.subplot(111) cid = fig.canvas.mpl_connect('button_press_event', left_button_down) dmap = Basemap(projection = 'cyl',
labels=[0,0,0,1]) bsmap.drawcoastlines() bsmap.fillcontinents(color='gray') bsmap.drawmapboundary() def smallest_multpr(x, z): ''' return the smallest y, while x*y>=z x, y, z are all positive num. ''' y = 1 while True: z1 = x*y if z1>=z: break y+=1 return y data = jata.get_nc_data(url, 'mask_rho', 'lon_rho', 'lat_rho', 'time', 'u', 'v') mask = data['mask_rho'][:] lon_rho = data['lon_rho'][:] lat_rho = data['lat_rho'][:] u = data['u'][:,-1] v = data['v'][:,-1] # nc = netCDF4.Dataset(url) # mask = nc.variables['mask_rho'][:] # lon_rho = nc.variables['lon_rho'][:] # lat_rho = nc.variables['lat_rho'][:] # time = nc.variables['time'][:] # u = nc.variables['u'][:, -1] # v = nc.variables['v'][:, -1] lons = shrink(lon_rho, mask[1:, 1:].shape) lats = shrink(lat_rho, mask[1:, 1:].shape) lon_p, lat_p = [], []
def get_data(self, url): data = jata.get_nc_data(url, 'h', 'lat_rho', 'lon_rho', 'temp', 's_rho', 'ocean_time') return data
plt.show() ''' tempobj = temp() url = tempobj.get_url(starttime, endtime) dtemp, dtime = tempobj.templine(x, y, url) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(dtime, dtemp) plt.show() ''' starttime, endtime = datetime(2006, 05, 19), datetime(2006, 05, 21) depth = -1 url = 'http://tds.marine.rutgers.edu:8080/thredds/dodsC/roms/espresso/2013_da/avg_Best/ESPRESSO_Real-Time_v2_Averages_Best_Available_best.ncd?h[0:1:81][0:1:129],temp[:][0:1:35][0:1:81][0:1:129],lon_rho[0:1:81][0:1:129],lat_rho[0:1:81][0:1:129]' data = jata.get_nc_data(url, 'lon_rho', 'lat_rho', 'h', 'temp') lonsize = np.amin(data['lon_rho'][:]) - 1, np.amax(data['lon_rho'][:]) + 1 latsize = np.amin(data['lat_rho'][:]) - 1, np.amax(data['lat_rho'][:]) + 1 ''' fig = plt.figure() ax = fig.add_subplot(111) x = range(1, 309) ax.plot(range(1, 309), data['temp'][:, 0, 25, 35]) # cid = fig.canvas.mpl_connect('button_press_event', left_button_down) # plt.xticks(x, range(5,308,50)) plt.show() ''' fig = plt.figure() ax = plt.subplot(111) cid = fig.canvas.mpl_connect('button_press_event', left_button_down) dmap = Basemap(projection='cyl',
def get_data(self,url): self.data = jata.get_nc_data(url,'lon','lat','latc','lonc', 'u','v','siglay','h') return self.data
import numpy as np import matplotlib.pyplot as plt import jata from mpl_toolkits.basemap import Basemap url = 'http://www.smast.umassd.edu:8080/thredds/dodsC/fvcom/hindcasts/30yr_gom3?lat[0:1:48450],latc[0:1:90414],lon[0:1:48450],lonc[0:1:90414]' data = jata.get_nc_data(url, 'lon', 'lat', 'lonc', 'latc') lonsize = [-76, -55] latsize = [35, 46.5] interval_lat, interval_lon = 0.5, 0.5 fig = plt.figure() ax = plt.subplot(111) dmap = Basemap(projection='cyl', llcrnrlat=min(latsize) - 0.01, urcrnrlat=max(latsize) + 0.01, llcrnrlon=min(lonsize) - 0.01, urcrnrlon=max(lonsize) + 0.01, resolution='h', ax=ax) dmap.drawparallels(np.arange(int(min(latsize)), int(max(latsize)) + 1, interval_lat), labels=[1, 0, 0, 0]) dmap.drawmeridians(np.arange( int(min(lonsize)) - 1, int(max(lonsize)) + 1, interval_lon), labels=[0, 0, 0, 1]) dmap.drawcoastlines() dmap.fillcontinents(color='grey') dmap.drawmapboundary()
def smallest_multpr(x, z): ''' return the smallest y, while x*y>=z x, y, z are all positive num. ''' y = 1 while True: z1 = x * y if z1 >= z: break y += 1 return y data = jata.get_nc_data(url, 'mask_rho', 'lon_rho', 'lat_rho', 'time', 'u', 'v') mask = data['mask_rho'][:] lon_rho = data['lon_rho'][:] lat_rho = data['lat_rho'][:] u = data['u'][:, -1] v = data['v'][:, -1] # nc = netCDF4.Dataset(url) # mask = nc.variables['mask_rho'][:] # lon_rho = nc.variables['lon_rho'][:] # lat_rho = nc.variables['lat_rho'][:] # time = nc.variables['time'][:] # u = nc.variables['u'][:, -1] # v = nc.variables['v'][:, -1] lons = shrink(lon_rho, mask[1:, 1:].shape) lats = shrink(lat_rho, mask[1:, 1:].shape) lon_p, lat_p = [], []