def _gen_recurrence_mask( l_max: int, is_normalized: bool = True) -> Tuple[jnp.ndarray, jnp.ndarray]: """Generates mask for recurrence relation on the remaining entries. The remaining entries are with respect to the diagonal and offdiagonal entries. Args: l_max: see `gen_normalized_legendre`. is_normalized: True if the recurrence mask is used by normalized associated Legendre functions. Returns: Arrays representing the mask used by the recurrence relations. """ # Computes all coefficients. m_mat, l_mat = jnp.mgrid[:l_max + 1, :l_max + 1] if is_normalized: c0 = l_mat * l_mat c1 = m_mat * m_mat c2 = 2.0 * l_mat c3 = (l_mat - 1.0) * (l_mat - 1.0) d0 = jnp.sqrt((4.0 * c0 - 1.0) / (c0 - c1)) d1 = jnp.sqrt(((c2 + 1.0) * (c3 - c1)) / ((c2 - 3.0) * (c0 - c1))) else: d0 = (2.0 * l_mat - 1.0) / (l_mat - m_mat) d1 = (l_mat + m_mat - 1.0) / (l_mat - m_mat) d0_mask_indices = jnp.triu_indices(l_max + 1, 1) d1_mask_indices = jnp.triu_indices(l_max + 1, 2) d_zeros = jnp.zeros((l_max + 1, l_max + 1)) d0_mask = d_zeros.at[d0_mask_indices].set(d0[d0_mask_indices]) d1_mask = d_zeros.at[d1_mask_indices].set(d1[d1_mask_indices]) # Creates a 3D mask that contains 1s on the diagonal plane and 0s elsewhere. # i = jnp.arange(l_max + 1)[:, None, None] # j = jnp.arange(l_max + 1)[None, :, None] # k = jnp.arange(l_max + 1)[None, None, :] i, j, k = jnp.ogrid[:l_max + 1, :l_max + 1, :l_max + 1] mask = 1.0 * (i + j - k == 0) d0_mask_3d = jnp.einsum('jk,ijk->ijk', d0_mask, mask) d1_mask_3d = jnp.einsum('jk,ijk->ijk', d1_mask, mask) return (d0_mask_3d, d1_mask_3d)
def _gen_derivatives(p: jnp.ndarray, x: jnp.ndarray, is_normalized: bool) -> jnp.ndarray: """Generates derivatives of associated Legendre functions of the first kind. Args: p: The 3D array containing the values of associated Legendre functions; the dimensions are in the sequence of order (m), degree (l), and evalution points. x: A vector of type `float32` or `float64` containing the sampled points. is_normalized: True if the associated Legendre functions are normalized. Returns: The 3D array representing the derivatives of associated Legendre functions of the first kind. """ num_m, num_l, num_x = p.shape # p_{l-1}^m. p_m_lm1 = jnp.pad(p, ((0, 0), (1, 0), (0, 0)))[:, :num_l, :] # p_{l-1}^{m+2}. p_mp2_lm1 = jnp.pad(p_m_lm1, ((0, 2), (0, 0), (0, 0)))[2:num_m + 2, :, :] # p_{l-1}^{m-2}. p_mm2_lm1 = jnp.pad(p_m_lm1, ((2, 0), (0, 0), (0, 0)))[:num_m, :, :] # Derivative computation requires negative orders. if is_normalized: raise NotImplementedError( 'Negative orders for normalization is not implemented yet.') else: if num_l > 1: l_vec = jnp.arange(1, num_l - 1) p_p1 = p[1, 1:num_l - 1, :] coeff = -1.0 / ((l_vec + 1) * l_vec) update_p_p1 = jnp.einsum('i,ij->ij', coeff, p_p1) p_mm2_lm1 = p_mm2_lm1.at[ops.index[1, 2:num_l, :]].set(update_p_p1) if num_l > 2: l_vec = jnp.arange(2, num_l - 1) p_p2 = p[2, 2:num_l - 1, :] coeff = 1.0 / ((l_vec + 2) * (l_vec + 1) * l_vec) update_p_p2 = jnp.einsum('i,ij->ij', coeff, p_p2) p_mm2_lm1 = p_mm2_lm1.at[ops.index[0, 3:num_l, :]].set(update_p_p2) m_mat, l_mat = jnp.mgrid[:num_m, :num_l] coeff_zeros = jnp.zeros((num_m, num_l)) upper_0_indices = jnp.triu_indices(num_m, 0, num_l) zero_vec = jnp.zeros((num_l, )) a0 = -0.5 / (m_mat - 1.0) a0_masked = coeff_zeros.at[upper_0_indices].set(a0[upper_0_indices]) a0_masked = a0_masked.at[1, :].set(zero_vec) b0 = l_mat + m_mat c0 = a0 * (b0 - 2.0) * (b0 - 1.0) c0_masked = coeff_zeros.at[upper_0_indices].set(c0[upper_0_indices]) c0_masked = c0_masked.at[1, :].set(zero_vec) # p_l^{m-1}. p_mm1_l = (jnp.einsum('ij,ijk->ijk', a0_masked, p_m_lm1) + jnp.einsum('ij,ijk->ijk', c0_masked, p_mm2_lm1)) d0 = -0.5 / (m_mat + 1.0) d0_masked = coeff_zeros.at[upper_0_indices].set(d0[upper_0_indices]) e0 = d0 * b0 * (b0 + 1.0) e0_masked = coeff_zeros.at[upper_0_indices].set(e0[upper_0_indices]) # p_l^{m+1}. p_mp1_l = (jnp.einsum('ij,ijk->ijk', d0_masked, p_mp2_lm1) + jnp.einsum('ij,ijk->ijk', e0_masked, p_m_lm1)) f0 = b0 * (l_mat - m_mat + 1.0) / 2.0 f0_masked = coeff_zeros.at[upper_0_indices].set(f0[upper_0_indices]) p_derivative = jnp.einsum('ij,ijk->ijk', f0_masked, p_mm1_l) - 0.5 * p_mp1_l # Special treatment of the singularity at m = 1. if num_m > 1: l_vec = jnp.arange(num_l) g0 = jnp.einsum('i,ij->ij', (l_vec + 1) * l_vec, p[0, :, :]) if num_l > 2: g0 = g0 - p[2, :, :] p_derivative_m0 = jnp.einsum('j,ij->ij', 0.5 / jnp.sqrt(1 - x * x), g0) p_derivative = p_derivative.at[1, :, :].set(p_derivative_m0) p_derivative = p_derivative.at[1, 0, :].set(jnp.zeros((num_x, ))) return p_derivative