def _iterate_argument_clinic(inference_state, arguments, parameters): """Uses a list with argument clinic information (see PEP 436).""" iterator = PushBackIterator(arguments.unpack()) for i, (name, optional, allow_kwargs, stars) in enumerate(parameters): if stars == 1: lazy_values = [] for key, argument in iterator: if key is not None: iterator.push_back((key, argument)) break lazy_values.append(argument) yield ValueSet([iterable.FakeTuple(inference_state, lazy_values)]) lazy_values continue elif stars == 2: raise NotImplementedError() key, argument = next(iterator, (None, None)) if key is not None: debug.warning('Keyword arguments in argument clinic are currently not supported.') raise ParamIssue if argument is None and not optional: debug.warning('TypeError: %s expected at least %s arguments, got %s', name, len(parameters), i) raise ParamIssue value_set = NO_VALUES if argument is None else argument.infer() if not value_set and not optional: # For the stdlib we always want values. If we don't get them, # that's ok, maybe something is too hard to resolve, however, # we will not proceed with the type inference of that function. debug.warning('argument_clinic "%s" not resolvable.', name) raise ParamIssue yield value_set
def get_executed_param_names_and_issues(function_value, arguments): """ Return a tuple of: - a list of `ExecutedParamName`s corresponding to the arguments of the function execution `function_value`, containing the inferred value of those arguments (whether explicit or default) - a list of the issues encountered while building that list For example, given: ``` def foo(a, b, c=None, d='d'): ... foo(42, c='c') ``` Then for the execution of `foo`, this will return a tuple containing: - a list with entries for each parameter a, b, c & d; the entries for a, c, & d will have their values (42, 'c' and 'd' respectively) included. - a list with a single entry about the lack of a value for `b` """ def too_many_args(argument): m = _error_argument_count(funcdef, len(unpacked_va)) # Just report an error for the first param that is not needed (like # cPython). if arguments.get_calling_nodes(): # There might not be a valid calling node so check for that first. issues.append( _add_argument_issue('type-error-too-many-arguments', argument, message=m)) else: issues.append(None) debug.warning('non-public warning: %s', m) issues = [] # List[Optional[analysis issue]] result_params = [] param_dict = {} funcdef = function_value.tree_node # Default params are part of the value where the function was defined. # This means that they might have access on class variables that the # function itself doesn't have. default_param_context = function_value.get_default_param_context() for param in funcdef.get_params(): param_dict[param.name.value] = param unpacked_va = list(arguments.unpack(funcdef)) var_arg_iterator = PushBackIterator(iter(unpacked_va)) non_matching_keys = defaultdict(lambda: []) keys_used = {} keys_only = False had_multiple_value_error = False for param in funcdef.get_params(): # The value and key can both be null. There, the defaults apply. # args / kwargs will just be empty arrays / dicts, respectively. # Wrong value count is just ignored. If you try to test cases that are # not allowed in Python, Jedi will maybe not show any completions. is_default = False key, argument = next(var_arg_iterator, (None, None)) while key is not None: keys_only = True try: key_param = param_dict[key] except KeyError: non_matching_keys[key] = argument else: if key in keys_used: had_multiple_value_error = True m = ( "TypeError: %s() got multiple values for keyword argument '%s'." % (funcdef.name, key)) for contextualized_node in arguments.get_calling_nodes(): issues.append( analysis.add(contextualized_node.context, 'type-error-multiple-values', contextualized_node.node, message=m)) else: keys_used[key] = ExecutedParamName(function_value, arguments, key_param, argument) key, argument = next(var_arg_iterator, (None, None)) try: result_params.append(keys_used[param.name.value]) continue except KeyError: pass if param.star_count == 1: # *args param lazy_value_list = [] if argument is not None: lazy_value_list.append(argument) for key, argument in var_arg_iterator: # Iterate until a key argument is found. if key: var_arg_iterator.push_back((key, argument)) break lazy_value_list.append(argument) seq = iterable.FakeTuple(function_value.inference_state, lazy_value_list) result_arg = LazyKnownValue(seq) elif param.star_count == 2: if argument is not None: too_many_args(argument) # **kwargs param dct = iterable.FakeDict(function_value.inference_state, dict(non_matching_keys)) result_arg = LazyKnownValue(dct) non_matching_keys = {} else: # normal param if argument is None: # No value: Return an empty container if param.default is None: result_arg = LazyUnknownValue() if not keys_only: for contextualized_node in arguments.get_calling_nodes( ): m = _error_argument_count(funcdef, len(unpacked_va)) issues.append( analysis.add( contextualized_node.context, 'type-error-too-few-arguments', contextualized_node.node, message=m, )) else: result_arg = LazyTreeValue(default_param_context, param.default) is_default = True else: result_arg = argument result_params.append( ExecutedParamName(function_value, arguments, param, result_arg, is_default=is_default)) if not isinstance(result_arg, LazyUnknownValue): keys_used[param.name.value] = result_params[-1] if keys_only: # All arguments should be handed over to the next function. It's not # about the values inside, it's about the names. Jedi needs to now that # there's nothing to find for certain names. for k in set(param_dict) - set(keys_used): param = param_dict[k] if not (non_matching_keys or had_multiple_value_error or param.star_count or param.default): # add a warning only if there's not another one. for contextualized_node in arguments.get_calling_nodes(): m = _error_argument_count(funcdef, len(unpacked_va)) issues.append( analysis.add(contextualized_node.context, 'type-error-too-few-arguments', contextualized_node.node, message=m)) for key, lazy_value in non_matching_keys.items(): m = "TypeError: %s() got an unexpected keyword argument '%s'." \ % (funcdef.name, key) issues.append( _add_argument_issue('type-error-keyword-argument', lazy_value, message=m)) remaining_arguments = list(var_arg_iterator) if remaining_arguments: first_key, lazy_value = remaining_arguments[0] too_many_args(lazy_value) return result_params, issues