Example #1
0
def _iterate_argument_clinic(inference_state, arguments, parameters):
    """Uses a list with argument clinic information (see PEP 436)."""
    iterator = PushBackIterator(arguments.unpack())
    for i, (name, optional, allow_kwargs, stars) in enumerate(parameters):
        if stars == 1:
            lazy_values = []
            for key, argument in iterator:
                if key is not None:
                    iterator.push_back((key, argument))
                    break

                lazy_values.append(argument)
            yield ValueSet([iterable.FakeTuple(inference_state, lazy_values)])
            lazy_values
            continue
        elif stars == 2:
            raise NotImplementedError()
        key, argument = next(iterator, (None, None))
        if key is not None:
            debug.warning('Keyword arguments in argument clinic are currently not supported.')
            raise ParamIssue
        if argument is None and not optional:
            debug.warning('TypeError: %s expected at least %s arguments, got %s',
                          name, len(parameters), i)
            raise ParamIssue

        value_set = NO_VALUES if argument is None else argument.infer()

        if not value_set and not optional:
            # For the stdlib we always want values. If we don't get them,
            # that's ok, maybe something is too hard to resolve, however,
            # we will not proceed with the type inference of that function.
            debug.warning('argument_clinic "%s" not resolvable.', name)
            raise ParamIssue
        yield value_set
Example #2
0
def get_executed_param_names_and_issues(function_value, arguments):
    """
    Return a tuple of:
      - a list of `ExecutedParamName`s corresponding to the arguments of the
        function execution `function_value`, containing the inferred value of
        those arguments (whether explicit or default)
      - a list of the issues encountered while building that list

    For example, given:
    ```
    def foo(a, b, c=None, d='d'): ...

    foo(42, c='c')
    ```

    Then for the execution of `foo`, this will return a tuple containing:
      - a list with entries for each parameter a, b, c & d; the entries for a,
        c, & d will have their values (42, 'c' and 'd' respectively) included.
      - a list with a single entry about the lack of a value for `b`
    """
    def too_many_args(argument):
        m = _error_argument_count(funcdef, len(unpacked_va))
        # Just report an error for the first param that is not needed (like
        # cPython).
        if arguments.get_calling_nodes():
            # There might not be a valid calling node so check for that first.
            issues.append(
                _add_argument_issue('type-error-too-many-arguments',
                                    argument,
                                    message=m))
        else:
            issues.append(None)
            debug.warning('non-public warning: %s', m)

    issues = []  # List[Optional[analysis issue]]
    result_params = []
    param_dict = {}
    funcdef = function_value.tree_node
    # Default params are part of the value where the function was defined.
    # This means that they might have access on class variables that the
    # function itself doesn't have.
    default_param_context = function_value.get_default_param_context()

    for param in funcdef.get_params():
        param_dict[param.name.value] = param
    unpacked_va = list(arguments.unpack(funcdef))
    var_arg_iterator = PushBackIterator(iter(unpacked_va))

    non_matching_keys = defaultdict(lambda: [])
    keys_used = {}
    keys_only = False
    had_multiple_value_error = False
    for param in funcdef.get_params():
        # The value and key can both be null. There, the defaults apply.
        # args / kwargs will just be empty arrays / dicts, respectively.
        # Wrong value count is just ignored. If you try to test cases that are
        # not allowed in Python, Jedi will maybe not show any completions.
        is_default = False
        key, argument = next(var_arg_iterator, (None, None))
        while key is not None:
            keys_only = True
            try:
                key_param = param_dict[key]
            except KeyError:
                non_matching_keys[key] = argument
            else:
                if key in keys_used:
                    had_multiple_value_error = True
                    m = (
                        "TypeError: %s() got multiple values for keyword argument '%s'."
                        % (funcdef.name, key))
                    for contextualized_node in arguments.get_calling_nodes():
                        issues.append(
                            analysis.add(contextualized_node.context,
                                         'type-error-multiple-values',
                                         contextualized_node.node,
                                         message=m))
                else:
                    keys_used[key] = ExecutedParamName(function_value,
                                                       arguments, key_param,
                                                       argument)
            key, argument = next(var_arg_iterator, (None, None))

        try:
            result_params.append(keys_used[param.name.value])
            continue
        except KeyError:
            pass

        if param.star_count == 1:
            # *args param
            lazy_value_list = []
            if argument is not None:
                lazy_value_list.append(argument)
                for key, argument in var_arg_iterator:
                    # Iterate until a key argument is found.
                    if key:
                        var_arg_iterator.push_back((key, argument))
                        break
                    lazy_value_list.append(argument)
            seq = iterable.FakeTuple(function_value.inference_state,
                                     lazy_value_list)
            result_arg = LazyKnownValue(seq)
        elif param.star_count == 2:
            if argument is not None:
                too_many_args(argument)
            # **kwargs param
            dct = iterable.FakeDict(function_value.inference_state,
                                    dict(non_matching_keys))
            result_arg = LazyKnownValue(dct)
            non_matching_keys = {}
        else:
            # normal param
            if argument is None:
                # No value: Return an empty container
                if param.default is None:
                    result_arg = LazyUnknownValue()
                    if not keys_only:
                        for contextualized_node in arguments.get_calling_nodes(
                        ):
                            m = _error_argument_count(funcdef,
                                                      len(unpacked_va))
                            issues.append(
                                analysis.add(
                                    contextualized_node.context,
                                    'type-error-too-few-arguments',
                                    contextualized_node.node,
                                    message=m,
                                ))
                else:
                    result_arg = LazyTreeValue(default_param_context,
                                               param.default)
                    is_default = True
            else:
                result_arg = argument

        result_params.append(
            ExecutedParamName(function_value,
                              arguments,
                              param,
                              result_arg,
                              is_default=is_default))
        if not isinstance(result_arg, LazyUnknownValue):
            keys_used[param.name.value] = result_params[-1]

    if keys_only:
        # All arguments should be handed over to the next function. It's not
        # about the values inside, it's about the names. Jedi needs to now that
        # there's nothing to find for certain names.
        for k in set(param_dict) - set(keys_used):
            param = param_dict[k]

            if not (non_matching_keys or had_multiple_value_error
                    or param.star_count or param.default):
                # add a warning only if there's not another one.
                for contextualized_node in arguments.get_calling_nodes():
                    m = _error_argument_count(funcdef, len(unpacked_va))
                    issues.append(
                        analysis.add(contextualized_node.context,
                                     'type-error-too-few-arguments',
                                     contextualized_node.node,
                                     message=m))

    for key, lazy_value in non_matching_keys.items():
        m = "TypeError: %s() got an unexpected keyword argument '%s'." \
            % (funcdef.name, key)
        issues.append(
            _add_argument_issue('type-error-keyword-argument',
                                lazy_value,
                                message=m))

    remaining_arguments = list(var_arg_iterator)
    if remaining_arguments:
        first_key, lazy_value = remaining_arguments[0]
        too_many_args(lazy_value)
    return result_params, issues