Example #1
0
def test_custom_emitters(plot=True):
    from jetset.jet_model import Jet

    from jetset.jet_emitters import EmittersDistribution
    import numpy as np

    def distr_func_bkn(gamma_break, gamma, s1, s2):
        return np.power(gamma, -s1) * (1. +
                                       (gamma / gamma_break))**(-(s2 - s1))

    n_e = EmittersDistribution('custom_bkn', spectral_type='bkn')
    n_e.add_par('gamma_break',
                par_type='turn-over-energy',
                val=1E3,
                vmin=1.,
                vmax=None,
                unit='lorentz-factor')
    n_e.add_par('s1',
                par_type='LE_spectral_slope',
                val=2.5,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.add_par('s2',
                par_type='LE_spectral_slope',
                val=3.2,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.set_distr_func(distr_func_bkn)
    n_e.parameters.show_pars()
    n_e.parameters.s1.val = 2.0
    n_e.parameters.s2.val = 3.5
    if plot is True:
        n_e.plot()

    my_jet = Jet(emitters_distribution=n_e)
    my_jet.Norm_distr = True
    my_jet.parameters.N.val = 5E4
    my_jet.eval()
    np.testing.assert_allclose(my_jet.emitters_distribution.eval_N(),
                               my_jet.parameters.N.val,
                               rtol=1E-5)
    print(my_jet.emitters_distribution.eval_N(), my_jet.parameters.N.val)
    print(n_e.eval_N(), my_jet.parameters.N.val)
    assert (my_jet.emitters_distribution.emitters_type == 'electrons')
    my_jet.save_model('test_jet_custom_emitters.pkl')
    my_jet = Jet.load_model('test_jet_custom_emitters.pkl')
    my_jet.eval()
def test_jet(plot=True):
    #print('--------> plot',plot)
    from jetset.jet_model import Jet
    j = Jet()
    j.eval()
    j.energetic_report()

    if plot is True:
        j.plot_model()
        j.emitters_distribution.plot()
        j.emitters_distribution.plot2p()
        j.emitters_distribution.plot3p()
        j.emitters_distribution.plot3p(energy_unit='eV')
        j.emitters_distribution.plot3p(energy_unit='erg')
    j.save_model('test_jet.pkl')
    j_new = Jet.load_model('test_jet.pkl')
Example #3
0
def test_custom_emitters_array(plot=True):
    from jetset.jet_model import Jet
    from jetset.jet_emitters import EmittersArrayDistribution
    import numpy as np

    # gamma array
    gamma = np.logspace(1, 8, 500)

    # gamma array this is n(\gamma) in 1/cm^3/gamma
    n_gamma = gamma**-2 * 1E-5 * np.exp(-gamma / 1E5)

    N1 = np.trapz(n_gamma, gamma)

    n_distr = EmittersArrayDistribution(name='array_distr',
                                        emitters_type='protons',
                                        gamma_array=gamma,
                                        n_gamma_array=n_gamma,
                                        normalize=False)

    N2 = np.trapz(n_distr._array_n_gamma, n_distr._array_gamma)

    j = Jet(emitters_distribution=n_distr, verbose=False)

    j.parameters.z_cosm.val = z = 0.001
    j.parameters.beam_obj.val = 1
    j.parameters.N.val = 1
    j.parameters.NH_pp.val = 1
    j.parameters.B.val = 0.01
    j.parameters.R.val = 1E18
    j.set_IC_nu_size(100)
    j.gamma_grid_size = 200

    N3 = np.trapz(j.emitters_distribution.n_gamma_p,
                  j.emitters_distribution.gamma_p)

    np.testing.assert_allclose(N1, N2, rtol=1E-5)
    np.testing.assert_allclose(N1, N3, rtol=1E-2)
    np.testing.assert_allclose(N1, j.emitters_distribution.eval_N(), rtol=1E-2)
    assert (j.emitters_distribution.emitters_type == 'protons')

    j.eval()
    j.save_model('test_jet_custom_emitters_array.pkl')
    j = Jet.load_model('test_jet_custom_emitters_array.pkl')
    j.eval()
def custom_emitters(plot=True):
    from jetset.jet_model import Jet

    from jetset.jet_emitters import EmittersDistribution
    import numpy as np

    def distr_func_bkn(gamma_break, gamma, s1, s2):
        return np.power(gamma, -s1) * (1. +
                                       (gamma / gamma_break))**(-(s2 - s1))

    n_e = EmittersDistribution('bkn')
    n_e.add_par('gamma_break',
                par_type='turn-over-energy',
                val=1E3,
                vmin=1.,
                vmax=None,
                unit='lorentz-factor')
    n_e.add_par('s1',
                par_type='LE_spectral_slope',
                val=2.5,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.add_par('s2',
                par_type='LE_spectral_slope',
                val=3.2,
                vmin=-10.,
                vmax=10,
                unit='')
    n_e.set_distr_func(distr_func_bkn)
    n_e.parameters.show_pars()
    n_e.parameters.s1.val = 2.0
    n_e.parameters.s2.val = 3.5
    if plot is True:
        n_e.plot()

    my_jet = Jet(electron_distribution=n_e)
    my_jet.Norm_distr = True
    my_jet.parameters.N.val = 5E4
    my_jet.eval()
    diff = np.fabs(
        np.trapz(n_e.n_gamma_e, n_e.gamma_e) - my_jet.parameters.N.val)
    print('diff', diff)
    assert (diff < 1E-3)
Example #5
0
def test_jet(plot=True):
    print('--------> test_jet', plot)
    from jetset.jet_model import Jet
    j = Jet()
    j.eval()
    j.energetic_report()
    sum1 = j.spectral_components.Sum.SED.nuFnu
    if plot is True:
        j.plot_model()
        j.emitters_distribution.plot()
        j.emitters_distribution.plot2p()
        j.emitters_distribution.plot3p()
        j.emitters_distribution.plot3p(energy_unit='eV')
        j.emitters_distribution.plot3p(energy_unit='erg')
    j.save_model('test_jet.pkl')
    j_new = Jet.load_model('test_jet.pkl')
    j_new.eval()
    sum2 = j_new.spectral_components.Sum.SED.nuFnu
    np.testing.assert_allclose(sum2, sum1, rtol=1E-5)
Example #6
0
def test_hadronic_jet(plot=True):
    from jetset.jet_model import Jet
    j = Jet(proton_distribution='plc')
    j.parameters.gmin.val = 2
    j.parameters.gmax.val = 1E8
    j.parameters.NH_pp.val = 1E10
    j.parameters.N.val = 1E1
    j.parameters.B.val = 80

    j.parameters.p.val = 2.5
    j.eval()
    j.show_model()
    sum1 = j.spectral_components.Sum.SED.nuFnu
    if plot is True:
        j.plot_model()
    j.save_model('test_jet_hadronic.pkl')
    j_new = Jet.load_model('test_jet_hadronic.pkl')
    j_new.eval()
    sum2 = j_new.spectral_components.Sum.SED.nuFnu
    np.testing.assert_allclose(sum2, sum1, rtol=1E-5)
def test_dep_par(plot=False):
    from jetset.jet_emitters import EmittersDistribution
    import numpy as np

    def distr_func_bkn(gamma_break, gamma, s1, s2):
        return np.power(gamma, -s1) * (1. + (gamma / gamma_break)) ** (-(s2 - s1))

    n_e_bkn = EmittersDistribution('bkn', spectral_type='bkn')
    n_e_bkn.add_par('gamma_break', par_type='turn-over-energy', val=1E3, vmin=1., vmax=None, unit='lorentz-factor')
    n_e_bkn.add_par('s1', par_type='LE_spectral_slope', val=2.5, vmin=-10., vmax=10, unit='')
    n_e_bkn.add_par('s2', par_type='LE_spectral_slope', val=3.2, vmin=-10., vmax=10, unit='')
    n_e_bkn.set_distr_func(distr_func_bkn)
    n_e_bkn.parameters.show_pars()
    n_e_bkn.parameters.s1.val = 2.0
    n_e_bkn.parameters.s2.val = 3.5
    n_e_bkn.update()
    n_e_bkn.parameters.show_pars()

    from jetset.jet_model import Jet

    j = Jet(emitters_distribution=n_e_bkn)

    # def par_func(s1):
    #    return s1+1
    j.make_dependent_par(par='s2', depends_on=['s1'], par_expr='s1+1')
    print('here')
    j.parameters.s1.val = 3
    print('done')
    np.testing.assert_allclose(j.parameters.s2.val, j.parameters.s1.val + 1)
    j.save_model('jet.pkl')
    new_jet = Jet.load_model('jet.pkl')
    print('here')
    new_jet.parameters.s1.val = 2
    print('done')

    np.testing.assert_allclose(new_jet.parameters.s2.val, new_jet.parameters.s1.val + 1)
    j.eval()
    new_jet.show_model()
Example #8
0
def test_my_foo():
    from jetset.plot_sedfit import plt
    plt.ioff()
    j = Jet()
    j.eval()
    j.energetic_report()
Example #9
0
# set parameters according to Figure 7.4 of Dermer 2009
pwl_jet.set_par("N", 1298.13238394)
pwl_jet.set_par("p", 2.8)
pwl_jet.set_par("gmin", 1e2)
pwl_jet.set_par("gmax", 1e5)
pwl_jet.set_par("B", 1)
pwl_jet.set_par("R", 1e16)
pwl_jet.set_par("beam_obj", 10)
pwl_jet.set_par("z_cosm", 0.07)
# remove SSA
pwl_jet.spectral_components.Sync.state = "on"

# synchrotron emission
pwl_jet.set_nu_grid(1e9, 1e19, 100)
pwl_jet.show_model()
pwl_jet.eval()

synch_nu = pwl_jet.spectral_components.Sync.SED.nu
synch_sed = pwl_jet.spectral_components.Sync.SED.nuFnu
plt.loglog(synch_nu, synch_sed)
plt.ylim([1e-20, 1e-9])
plt.show()
condition = synch_sed.value > 1e-20
nu = synch_nu.value[condition]
sed = synch_sed.value[condition]
np.savetxt("synch_pwl_jetset_1.1.2.txt",
           np.asarray([nu, sed]).T,
           delimiter=",")

# SSC emission
pwl_jet.set_nu_grid(1e14, 1e26, 100)
Example #10
0
# generate a SSA synchrotron SED to be confronted with the one produced by agnpy
from jetset.jet_model import Jet
import numpy as np
import astropy.units as u
import matplotlib.pyplot as plt

# jet with power-law electron distribution
pwl_jet = Jet(
    name="", electron_distribution="pl", electron_distribution_log_values=False
)
pwl_jet.set_nu_grid(1e9, 1e20, 50)
pwl_jet.show_model()
pwl_jet.eval()
synch_nu = pwl_jet.spectral_components.Sync.SED.nu
synch_sed = pwl_jet.spectral_components.Sync.SED.nuFnu
plt.loglog(synch_nu, synch_sed)
plt.ylim([1e-20, 1e-9])
plt.show()
condition = synch_sed.value > 1e-20
nu = synch_nu.value[condition]
sed = synch_sed.value[condition]
np.savetxt("synch_ssa_pwl_jetset_1.1.2.txt", np.asarray([nu, sed]).T, delimiter=",")

# jet with broken power-law electron distribution
bpl_jet = Jet(name="", electron_distribution="bkn")
bpl_jet.set_nu_grid(1e9, 1e20, 50)
bpl_jet.show_model()
bpl_jet.eval()
synch_nu = bpl_jet.spectral_components.Sync.SED.nu
synch_sed = bpl_jet.spectral_components.Sync.SED.nuFnu
plt.loglog(synch_nu, synch_sed)
Example #11
0
def test_jet():
    from jetset.jet_model import Jet
    j = Jet()
    j.eval()
    j.energetic_report()