def model_fit_lsb(sed_data, my_shape, plot=True): from jetset.minimizer import fit_SED, ModelMinimizer from jetset.model_manager import FitModel from jetset.jet_model import Jet jet_lsb = Jet.load_model('prefit_jet_gal_templ.pkl') jet_lsb.set_gamma_grid_size(200) fit_model_lsb = FitModel(jet=jet_lsb, name='SSC-best-fit-lsb', template=my_shape.host_gal) fit_model_lsb.freeze('jet_leptonic', 'z_cosm') fit_model_lsb.freeze('jet_leptonic', 'R_H') fit_model_lsb.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] fit_model_lsb.jet_leptonic.parameters.R.fit_range = [10**15.5, 10**17.5] fit_model_lsb.jet_leptonic.parameters.gmax.fit_range = [1E4, 1E8] fit_model_lsb.host_galaxy.parameters.nuFnu_p_host.frozen = False fit_model_lsb.host_galaxy.parameters.nu_scale.frozen = True model_minimizer_lsb, best_fit_lsb = fit_SED(fit_model_lsb, sed_data, 10.0**11, 10**29.0, fitname='SSC-best-fit-lsb', minimizer='lsb') best_fit_lsb.save_report('best-fit-minuit-report.txt') fit_model_lsb.save_model('fit_model_lsb.pkl') fit_model_lsb_new = FitModel.load_model('fit_model_lsb.pkl') model_minimizer_lsb.save_model('model_minimizer_lsb.pkl') model_minimizer_lsb_new = ModelMinimizer.load_model( 'model_minimizer_lsb.pkl') return jet_lsb, model_minimizer_lsb_new, fit_model_lsb_new
def test_model_fit(sed_data=None, prefit_jet=None, plot=True,sed_number=1,minimizer='lsb'): from jetset.minimizer import fit_SED,ModelMinimizer from jetset.model_manager import FitModel template, jet,sed_data=test_prepare_fit(sed_data=sed_data,prefit_jet=prefit_jet,plot=plot,sed_number=sed_number) fit_model = FitModel(jet=jet, name='SSC-best-fit-minuit', template=template) fit_model.freeze('jet_leptonic','z_cosm') fit_model.freeze('jet_leptonic','R_H') fit_model.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] fit_model.jet_leptonic.parameters.R.fit_range = [10 ** 15.5, 10 ** 17.5] if minimizer == 'minuit': fit_model.jet_leptonic.parameters.gmin.fit_range = [2, 200] fit_model.jet_leptonic.parameters.gmax.fit_range = [1E5, 1E7] fit_model.jet_leptonic.parameters.B.fit_range = [1E-3,2] if template is not None: fit_model.host_galaxy.parameters.nuFnu_p_host.frozen = False fit_model.host_galaxy.parameters.nu_scale.frozen = True model_minimizer = ModelMinimizer(minimizer) best_fit = model_minimizer.fit(fit_model, sed_data, 10 ** 11., 10 ** 29.0, fitname='SSC-best-fit-minuit', repeat=1) best_fit.show_report() best_fit.save_report('best-fit-%s-report.pkl'%minimizer) best_fit.bestfit_table.write('best-fit-%s-report.ecsv'%minimizer) model_minimizer.save_model('model_minimizer_%s.pkl'%minimizer) model_minimizer = ModelMinimizer.load_model('model_minimizer_%s.pkl'%minimizer) fit_model.save_model('fit_model_%s.pkl'%minimizer) return fit_model, model_minimizer,sed_data
def model_fit_minuit(sed_data, my_shape, plot=True): from jetset.minimizer import fit_SED from jetset.model_manager import FitModel from jetset.jet_model import Jet jet_minuit = Jet.load_model('prefit_jet_gal_templ.pkl') jet_minuit.set_gamma_grid_size(200) fit_model_minuit = FitModel(jet=jet_minuit, name='SSC-best-fit-minuit', template=my_shape.host_gal) fit_model_minuit.freeze('z_cosm') fit_model_minuit.freeze('R_H') fit_model_minuit.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] fit_model_minuit.jet_leptonic.parameters.R.fit_range = [10**15.5, 10**17.5] fit_model_minuit.host_galaxy.parameters.nuFnu_p_host.frozen = False fit_model_minuit.host_galaxy.parameters.nu_scale.frozen = True model_minimizer_minuit, best_fit_minuit = fit_SED( fit_model_minuit, sed_data, 10.0**11, 10**29.0, fitname='SSC-best-fit-minuit', minimizer='minuit') best_fit_minuit.save_report('best-fit-minuit-report.txt') fit_model_minuit.save_model('fit_model_minuit.pkl') return jet_minuit, model_minimizer_minuit
def test_dep_par_composite_model(plot=False): import numpy as np from jetset.model_manager import FitModel from jetset.jet_model import Jet jet = Jet(emitters_distribution='plc') fit_model = FitModel(jet=jet, name='SSC-best-fit-lsb', template=None) fit_model.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] fit_model.jet_leptonic.parameters.R_H.val = 5E17 fit_model.jet_leptonic.parameters.R_H.frozen = False fit_model.jet_leptonic.parameters.R_H.fit_range = [1E15, 1E19] fit_model.jet_leptonic.parameters.R.fit_range = [10 ** 15.5, 10 ** 17.5] fit_model.jet_leptonic.add_user_par(name='B0', units='G', val=1E3, val_min=0, val_max=None) fit_model.jet_leptonic.add_user_par(name='R0', units='cm', val=5E13, val_min=0, val_max=None) fit_model.jet_leptonic.parameters.R0.frozen = True fit_model.jet_leptonic.parameters.B0.frozen = True par_expr = 'B0*(R0/R_H)' fit_model.jet_leptonic.make_dependent_par(par='B', depends_on=['B0', 'R0', 'R_H'], par_expr=par_expr) B0=fit_model.jet_leptonic.parameters.B0.val R0 = fit_model.jet_leptonic.parameters.R0.val R_H = fit_model.jet_leptonic.parameters.R_H.val np.testing.assert_allclose(fit_model.jet_leptonic.parameters.B.val, eval(par_expr)) fit_model.save_model('test_composite.pkl') new_fit_model=FitModel.load_model('test_composite.pkl') new_fit_model.jet_leptonic.parameters.B0.val=1E4 B0 = new_fit_model.jet_leptonic.parameters.B0.val R0 = new_fit_model.jet_leptonic.parameters.R0.val R_H = new_fit_model.jet_leptonic.parameters.R_H.val np.testing.assert_allclose(new_fit_model.jet_leptonic.parameters.B.val, eval(par_expr))
def model_fit_lsb(sed_data, ): from jetset.minimizer import fit_SED from jetset.model_manager import FitModel from jetset.jet_model import Jet jet = Jet.load_model('prefit_jet.dat') fit_model = FitModel(jet=jet, name='SSC-best-fit', template=None) fit_model.freeze('z_cosm') fit_model.freeze('R_H') fit_model.parameters.R.fit_range = [10**15.5, 10**17.5] fit_model.parameters.gmax.fit_range = [1E4, 1E8] model_minimizer_lsb, best_fit_lsb = fit_SED(fit_model, sed_data, 10.0**11, 10**29.0, fitname='SSC-best-fit', minimizer='lsb') best_fit_lsb.save_report('best-fit-lsb-report.txt') fit_model.save_model('fit_model_lsb.dat')
def test_model_fit_dep_pars(sed_data=None, prefit_jet=None, plot=True,sed_number=1,minimizer='lsb'): from jetset.minimizer import fit_SED,ModelMinimizer from jetset.model_manager import FitModel template, jet,sed_data=test_prepare_fit(sed_data=sed_data,prefit_jet=prefit_jet,plot=plot,sed_number=sed_number) fit_model = FitModel(jet=jet, name='SSC-best-fit-minuit', template=template) fit_model.freeze('jet_leptonic','z_cosm') fit_model.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] fit_model.jet_leptonic.parameters.R_H.val = 5E17 fit_model.jet_leptonic.parameters.R_H.frozen = False fit_model.jet_leptonic.parameters.R_H.fit_range = [1E15, 1E19] fit_model.jet_leptonic.parameters.R.fit_range = [10 ** 15.5, 10 ** 17.5] fit_model.jet_leptonic.add_user_par(name='B0', units='G', val=1E3, val_min=0, val_max=None) fit_model.jet_leptonic.add_user_par(name='R0', units='cm', val=5E13, val_min=0, val_max=None) fit_model.jet_leptonic.parameters.R0.frozen = True fit_model.jet_leptonic.parameters.B0.frozen = True fit_model.jet_leptonic.make_dependent_par(par='B', depends_on=['B0', 'R0', 'R_H'], par_expr='B0*(R0/R_H)') if minimizer == 'minuit': fit_model.jet_leptonic.parameters.gmin.fit_range = [2, 200] fit_model.jet_leptonic.parameters.gmax.fit_range = [1E5, 1E7] if template is not None: fit_model.host_galaxy.parameters.nuFnu_p_host.frozen = False fit_model.host_galaxy.parameters.nu_scale.frozen = True model_minimizer = ModelMinimizer(minimizer) best_fit = model_minimizer.fit(fit_model, sed_data, 10 ** 11., 10 ** 29.0, fitname='SSC-best-fit-minuit', repeat=1) best_fit.show_report() best_fit.save_report('best-fit-%s-report.pkl'%minimizer) best_fit.bestfit_table.write('best-fit-%s-report.ecsv'%minimizer) model_minimizer.save_model('model_minimizer_%s.pkl'%minimizer) model_minimizer = ModelMinimizer.load_model('model_minimizer_%s.pkl'%minimizer) fit_model.save_model('fit_model_%s.pkl'%minimizer) return fit_model, model_minimizer,sed_data
def test_ebl_jet(plot=True,): from jetset.jet_model import Jet from jetset.template_2Dmodel import EBLAbsorptionTemplate from jetset.model_manager import FitModel my_jet = Jet(electron_distribution='lppl', name='jet_flaring') my_jet.parameters.z_cosm.val = 0.01 ebl_franceschini = EBLAbsorptionTemplate.from_name('Franceschini_2008') composite_model = FitModel(nu_size=500, name='EBL corrected') composite_model.add_component(my_jet) composite_model.add_component(ebl_franceschini) composite_model.show_pars() composite_model.link_par(par_name='z_cosm', from_model='Franceschini_2008', to_model='jet_flaring') v=0.03001 my_jet.parameters.z_cosm.val = v assert (composite_model.Franceschini_2008.parameters.z_cosm.val==v) assert (composite_model.Franceschini_2008.parameters.z_cosm.linked==True) assert (composite_model.Franceschini_2008.parameters.z_cosm.val == composite_model.jet_flaring.parameters.z_cosm.val) composite_model.composite_expr = '%s*%s'%(my_jet.name,ebl_franceschini.name) composite_model.eval() if plot is True: composite_model.plot_model() composite_model.save_model('ebl_jet.pkl') new_composite_model=FitModel.load_model('ebl_jet.pkl') v=2.0 new_composite_model.jet_flaring.parameters.z_cosm.val=v assert (new_composite_model.Franceschini_2008.parameters.z_cosm.val == v) assert (new_composite_model.Franceschini_2008.parameters.z_cosm.linked == True)
def test_ebl_jet_fit(plot=True,sed_number=2,minimizer='lsb'): from .test_model_fit import test_prepare_fit template, jet,sed_data = test_prepare_fit(sed_number=sed_number) from jetset.template_2Dmodel import EBLAbsorptionTemplate ebl_franceschini = EBLAbsorptionTemplate.from_name('Franceschini_2008') ebl_franceschini.show_model() from jetset.model_manager import FitModel composite_model = FitModel(nu_size=500, name='EBL corrected', template=template) composite_model.add_component(jet) composite_model.add_component(ebl_franceschini) composite_model.link_par(par_name='z_cosm', from_model='Franceschini_2008', to_model=jet.name) if template is not None: composite_model.composite_expr = '(%s+host_galaxy)*Franceschini_2008'%jet.name else: composite_model.composite_expr = '(%s)*Franceschini_2008' % jet.name assert (composite_model.Franceschini_2008.parameters.z_cosm.val == composite_model.jet_leptonic.parameters.z_cosm.val) assert (composite_model.Franceschini_2008.parameters.z_cosm.linked is True) composite_model.show_model() composite_model.eval() if plot is True: composite_model.plot_model() from jetset.minimizer import ModelMinimizer composite_model.freeze(jet, 'R_H') composite_model.freeze(jet, 'z_cosm') if minimizer == 'minuit': composite_model.jet_leptonic.parameters.gmin.fit_range = [2, 200] composite_model.jet_leptonic.parameters.gmax.fit_range = [1E5, 1E7] if template is not None: composite_model.host_galaxy.parameters.nuFnu_p_host.frozen = False composite_model.host_galaxy.parameters.nu_scale.frozen = True composite_model.jet_leptonic.parameters.beam_obj.fit_range = [5, 50] composite_model.jet_leptonic.parameters.R.fit_range = [10 ** 15.5, 10 ** 17.5] composite_model.jet_leptonic.parameters.gmax.fit_range = [1E4, 1E8] composite_model.jet_leptonic.nu_size = 200 composite_model.jet_leptonic.IC_nu_size = 100 model_minimizer = ModelMinimizer(minimizer) best_fit = model_minimizer.fit(composite_model, sed_data, 10 ** 11., 10 ** 29.0, fitname='SSC-best-fit-minuit', repeat=1) best_fit.show_report() best_fit.save_report('best-fit-%s-report.pkl' % minimizer) best_fit.bestfit_table.write('best-fit-%s-report.ecsv' % minimizer) model_minimizer.save_model('model_minimizer_%s.pkl' % minimizer) model_minimizer = ModelMinimizer.load_model('model_minimizer_%s.pkl' % minimizer) composite_model.save_model('fit_model_%s.pkl' % minimizer)