def test_pendulum_integration(self): """ @brief Compare pendulum motion, as simulated by Jiminy, against an equivalent simulation done in python. @details Since we don't have a simple analytical expression for the solution of a (nonlinear) pendulum motion, we perform the simulation in Python, with the same integrator, and compare both results. """ # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot) # Run simulation and extract log data x0 = np.array([0.1, 0.0]) tf = 2.0 time, x_jiminy = simulate_and_get_state_evolution(engine, tf, x0, split=False) # Pendulum dynamics def dynamics(t, x): return np.array([x[1], self.g / self.l * np.sin(x[0])]) # Integrate this non-linear dynamics x_rk_python = integrate_dynamics(time, x0, dynamics) # Compare the numerical and numerical integration of analytical model # using Scipy self.assertTrue(np.allclose(x_jiminy, x_rk_python, atol=TOLERANCE))
def test_continuous_simulation(self): """ @brief Test simulation of this system using a continuous time controller. """ def compute_command(t, q, v, sensors_data, u): u[:] = - self.k * q - self.nu * v def internal_dynamics(t, q, v, sensors_data, u): u[:] = 0.0 controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine.set_options(engine_options) # Run simulation engine.simulate(self.tf, self.x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute analytical solution x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0) # Compare the numerical and analytical solutions self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_fixed_body_constraint(self): """ @brief Test kinematic constraint: fixed second mass with a constaint. """ # Create and initialize the engine engine = jiminy.Engine() setup_controller_and_engine( engine, self.robot, internal_dynamics=self._spring_force) # Configure the engine engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine.set_options(engine_options) # Add a kinematic constraint on the second mass constraint = jiminy.FixedFrameConstraint("SecondMass") self.robot.add_constraint("fixMass", constraint) # The dynamics of the first mass is not changed, the acceleration of # the second mass is the opposite of that of the first mass to provide # a constant output position. self.A[3, :] = -self.A[2, :] # Compare the numerical and analytical solutions _, x_jiminy, x_analytical = \ self._get_simulated_and_analytical_solutions( engine, self.tf, self.x0) self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_contact_point_dynamics(self): """ @brief Validate the contact dynamics. @details The energy is expected to decrease slowly when penetrating into the ground, but should stay constant otherwise. Then, the equilibrium point must also match the physics. Note that the friction model is not assessed here. """ # Create the engine engine = jiminy.Engine() engine.initialize(self.robot) engine_options = engine.get_options() engine_options['contacts']['stiffness'] = self.k_contact engine_options['contacts']['damping'] = self.nu_contact engine_options['contacts']['transitionEps'] = 1.0 / self.k_contact # To avoid assertion failure because of problem regularization engine_options["stepper"]["dtMax"] = self.dtMax engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Extract some information about the engine and the robot mass = self.robot.pinocchio_model.inertias[-1].mass gravity = engine.get_options()['world']['gravity'][2] # Run simulation x0 = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) # [TX,TY,TZ],[QX,QY,QZ,QW] tf = 1.5 engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['HighLevelController.' + s] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Total energy and derivative E_contact = 1/2 * self.k_contact * np.minimum(x_jiminy[:, 2], 0.0) ** 2 E_robot = log_data['HighLevelController.energy'] E_tot = E_robot + E_contact E_diff_robot = np.concatenate((np.diff(E_robot) / np.diff(time), np.array([0.0], dtype=E_robot.dtype))) E_diff_tot = np.concatenate((np.diff(E_tot) / np.diff(time), np.array([0.0], dtype=E_robot.dtype))) # Check that the total energy never increases # One must use a specific, less restrictive, tolerance, because of numerical differentiation error of float32. TOLERANCE_diff = 5e-2 self.assertTrue(np.all(E_diff_tot < TOLERANCE_diff)) # Check that the energy of robot only increases when the robot is moving upward while still in the ground. # This is done by check that there is not two consecutive samples violating this law. self.assertTrue(np.all(np.diff(np.where((E_diff_robot > 0.0) != \ np.logical_and(x_jiminy[:, 9] > 0.0, x_jiminy[:, 2] < 0.0))) > 1)) # Compare the numerical and analytical equilibrium state idx = self.robot.pinocchio_model.frames[self.robot.pinocchio_model.getFrameId("MassBody")].parent self.assertTrue(np.allclose(-engine.system_state.f_external[idx].linear[2], mass * gravity, atol=TOLERANCE)) self.assertTrue(np.allclose(self.k_contact * x_jiminy[-1, 2], mass * gravity, atol=TOLERANCE))
def test_force_sensor(self): """ @brief Validate output of force sensor. @details The energy is expected to decrease slowly when penetrating into the ground, but should stay constant otherwise. Then, the equilibrium point must also match the physics. Note that the friction model is not assessed here. """ # Create the engine engine = jiminy.Engine() engine.initialize(self.robot) engine_options = engine.get_options() engine_options['contacts']['stiffness'] = self.k_contact engine_options['contacts']['damping'] = self.nu_contact engine_options['contacts']['transitionEps'] = 1.0 / self.k_contact # To avoid assertion failure because of problem regularization engine_options["stepper"]["dtMax"] = self.dtMax engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) idx = self.robot.pinocchio_model.getFrameId("MassBody") def computeCommand(t, q, v, sensors_data, u): # Verify sensor data. f = Force(sensors_data[jiminy.ForceSensor.type, "MassBody"], np.zeros(3)) f_joint_sensor = self.robot.pinocchio_model.frames[idx].placement * f f_jiminy = engine.system_state.f_external[self.robot.pinocchio_model.frames[idx].parent] self.assertTrue(np.allclose(f_joint_sensor.vector, f_jiminy.vector, atol=TOLERANCE)) u[:] = 0.0 # Internal dynamics: make the mass spin to generate nontrivial rotations. def internalDynamics(t, q, v, sensors_data, u): u[3:6] = 1.0 controller = jiminy.ControllerFunctor(computeCommand, internalDynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) # Run simulation x0 = np.array([0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) # [TX,TY,TZ],[QX,QY,QZ,QW] tf = 1.5 engine.simulate(tf, x0)
def test_fixed_body_constraint_rotor_inertia(self): """ @brief Test fixed body constraint together with rotor inertia. """ # Create robot with freeflyer, set rotor inertia. self.robot = load_urdf_default(self.urdf_path, ["PendulumJoint"]) J = 0.1 motor_options = self.robot.get_motors_options() motor_options["PendulumJoint"]['enableRotorInertia'] = True motor_options["PendulumJoint"]['rotorInertia'] = J self.robot.set_motors_options(motor_options) # No controller def computeCommand(t, q, v, sensor_data, u): u[:] = 0.0 # Dynamics: simulate a spring of stifness k k_spring = 500 def internalDynamics(t, q, v, sensor_data, u): u[:] = -k_spring * q[:] controller = jiminy.ControllerFunctor(computeCommand, internalDynamics) controller.initialize(self.robot) # Set fixed body constraint. freeflyer_constraint = jiminy.FixedFrameConstraint("world") self.robot.add_constraint("world", freeflyer_constraint) engine = jiminy.Engine() engine.initialize(self.robot, controller) engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity engine.set_options(engine_options) x0 = np.array([0.1, 0.0]) tf = 2.0 # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['HighLevelController.' + s] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Analytical solution: dynamics should be unmodifed by # the constraint, so we have a simple mass on a spring. pnc_model = self.robot.pinocchio_model_th I = pnc_model.inertias[1].mass * pnc_model.inertias[1].lever[2]**2 # Write system dynamics I_eq = I + J A = np.array([[0, 1], [-k_spring / I_eq, 0]]) x_analytical = np.stack([expm(A * t).dot(x0) for t in time], axis=0) self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_freeflyer_multiple_constraints(self): """ @brief Test having several constraints at once. @details This test features: - a freeflyer with a fixed body constraint on the freeflyer. This gives a non-trivial constraint to solve to effectively cancel the freeflyer. - a fixed body constaint on the output mass. """ # Rebuild the model with a freeflyer robot = load_urdf_default( self.urdf_name, self.motors_names, has_freeflyer=True) # Create and initialize the engine engine = jiminy.Engine() setup_controller_and_engine( engine, robot, internal_dynamics=self._spring_force) # Configure the engine engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine.set_options(engine_options) # Add a kinematic constraints. freeflyer_constraint = jiminy.FixedFrameConstraint("world") robot.add_constraint("world", freeflyer_constraint) fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass") robot.add_constraint("fixMass", fix_mass_constraint) # Initialize with a random freeflyer configuration and zero velocity x_init = np.zeros(17) x_init[:7] = np.random.rand(7) x_init[3:7] /= np.linalg.norm(x_init[3:7]) x_init[7:9], x_init[-2:] = np.split(self.x0, 2) # The acceleration of the second mass should be the opposite of that of # the first self.A[3, :] = -self.A[2, :] # Compare the numerical and analytical solutions _, x_jiminy, x_analytical = \ self._get_simulated_and_analytical_solutions( engine, self.tf, x_init) self.assertTrue(np.allclose( x_jiminy[:, [7, 8, 15, 16]], x_analytical, atol=TOLERANCE)) # Verify in addition that freeflyer has not moved self.assertTrue(np.allclose(x_jiminy[:, 9:15], 0, atol=TOLERANCE)) self.assertTrue(np.allclose( x_jiminy[:, :7], x_jiminy[0, :7], atol=TOLERANCE))
def test_rotor_inertia(self): """ @brief Verify the dynamics of the system when adding rotor inertia. """ # No controller def computeCommand(t, q, v, sensors_data, u): u[:] = 0.0 # Dynamics: simulate a spring of stiffness k k_spring = 500 def internalDynamics(t, q, v, sensors_data, u): u[:] = -k_spring * q[:] controller = jiminy.ControllerFunctor(computeCommand, internalDynamics) controller.initialize(self.robot) # Set rotor inertia J = 0.1 motor_options = self.robot.get_motors_options() motor_options["PendulumJoint"]['enableRotorInertia'] = True motor_options["PendulumJoint"]['rotorInertia'] = J self.robot.set_motors_options(motor_options) engine = jiminy.Engine() engine.initialize(self.robot, controller) engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity engine.set_options(engine_options) x0 = np.array([0.1, 0.0]) tf = 2.0 # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Analytical solution: a simple mass on a spring pnc_model = self.robot.pinocchio_model_th I = pnc_model.inertias[1].mass * pnc_model.inertias[1].lever[2]**2 # Write system dynamics I_eq = I + J A = np.array([[0, 1], [-k_spring / I_eq, 0]]) x_analytical = np.stack([expm(A * t).dot(x0) for t in time], axis=0) self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_armature(self): """ @brief Verify the dynamics of the system when adding rotor inertia. """ # Configure the robot: set rotor inertia J = 0.1 motor_options = self.robot.get_motors_options() motor_options["PendulumJoint"]['enableArmature'] = True motor_options["PendulumJoint"]['armature'] = J self.robot.set_motors_options(motor_options) # Dynamics: simulate a spring of stiffness k k_spring = 500 def spring_force(t, q, v, sensors_data, u_custom): u_custom[:] = -k_spring * q.flatten() # Initialize the controller and setup the engine engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot, internal_dynamics=spring_force) # Configure the engine engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine_options["world"]["gravity"] = np.zeros(6) engine.set_options(engine_options) # Run simulation and extract log data x0 = np.array([0.1, 0.0]) tf = 2.0 time, x_jiminy = simulate_and_get_state_evolution(engine, tf, x0, split=False) # Analytical solution: a simple mass on a spring I_eq = self.I + J A = np.array([[0, 1], [-k_spring / I_eq, 0]]) x_analytical = np.stack( [scipy.linalg.expm(A * t).dot(x0) for t in time], axis=0) self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_external_force_profile(self): """ @brief Test adding an external force profile function to the system. """ # Set same springs as usual def compute_command(t, q, v, sensors_data, u): u[:] = 0.0 def internal_dynamics(t, q, v, sensors_data, u): u[:] = -self.k * q - self.nu * v controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) # Define external force: a spring linking the second mass to the origin. k_ext = 50 def external_force(t, q, v, f): f[0] = -k_ext * (q[0] + q[1]) engine.register_force_profile("SecondMass", external_force) # Run simulation engine.simulate(self.tf, self.x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute analytical solution # Add extra external force to second mass. m = self.robot.pinocchio_model_th.inertias[2].mass self.A[3, :] += np.array([-k_ext / m, -k_ext / m, 0, 0]) x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0) # Compare the numerical and analytical solutions self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_contact_sensor(self): """ @brief Validate output of contact sensor. @details The energy is expected to decrease slowly when penetrating into the ground, but should stay constant otherwise. Then, the equilibrium point must also match the physics. Note that the friction model is not assessed here. """ # Create the robot robot, *_, joint_idx, frame_pose = self._setup(ShapeType.POINT) # Create the engine engine = jiminy.Engine() # No control law, only check sensors data def check_sensors_data(t, q, v, sensors_data, command): nonlocal engine, frame_pose # Verify sensor data, if the engine has been initialized if engine.is_initialized: contact_data = sensors_data[ jiminy.ContactSensor.type, self.body_name] f = Force(contact_data, np.zeros(3)) f_joint_sensor = frame_pose * f f_jiminy = engine.system_state.f_external[joint_idx] self.assertTrue(np.allclose( f_joint_sensor.vector, f_jiminy.vector, atol=TOLERANCE)) # Internal dynamics: make the mass spin to generate nontrivial # rotations. def spinning_force(t, q, v, sensors_data, u_custom): u_custom[3:6] = 1.0 # Initialize and configure the engine self._setup_controller_and_engine(engine, robot, compute_command=check_sensors_data, internal_dynamics=spinning_force) # Run simulation q0, v0 = neutral_state(robot, split=True) tf = 1.5 engine.simulate(tf, q0, v0)
def test_fixed_body_constraint(self): """ @brief Test kinematic constraint: fixed second mass with a constaint. """ # Set same spings as usual def compute_command(t, q, v, sensors_data, u): u[:] = 0.0 def internal_dynamics(t, q, v, sensors_data, u): u[:] = -self.k * q - self.nu * v controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) # Add a kinematic constraint on the second mass constraint = jiminy.FixedFrameConstraint("SecondMass") self.robot.add_constraint("fixMass", constraint) # Run simulation engine.simulate(self.tf, self.x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute analytical solution # The dynamics of the first mass is not changed, the acceleration of the second # mass is the opposite of that of the first mass to provide a constant # output position. self.A[3, :] = -self.A[2, :] x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0) # Compare the numerical and analytical solutions self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def test_pendulum_integration(self): """ @brief Compare pendulum motion, as simulated by Jiminy, against an equivalent simulation done in python. @details Since we don't have a simple analytical expression for the solution of a (nonlinear) pendulum motion, we perform the simulation in python, with the same integrator, and compare both results. """ # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() engine.initialize(self.robot) x0 = np.array([0.1, 0.0]) tf = 2.0 # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # System dynamics: get length and inertia. l = -self.robot.pinocchio_model_th.inertias[1].lever[2] g = self.robot.pinocchio_model.gravity.linear[2] # Pendulum dynamics def dynamics(t, x): return np.array([x[1], g / l * np.sin(x[0])]) # Integrate this non-linear dynamics. x_rk_python = integrate_dynamics(time, x0, dynamics) # Compare the numerical and numerical integration of analytical model using scipy self.assertTrue(np.allclose(x_jiminy, x_rk_python, atol=TOLERANCE))
def test_continuous_simulation(self): """ @brief Test simulation of this system using a continuous time controller. """ # Create and initialize the engine engine = jiminy.Engine() setup_controller_and_engine( engine, self.robot, compute_command=self._spring_force) # Configure the engine engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine.set_options(engine_options) # Compare the numerical and analytical solutions _, x_jiminy, x_analytical = \ self._get_simulated_and_analytical_solutions( engine, self.tf, self.x0) self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
def _test_collision_and_contact_dynamics(self, shape): """ @brief Validate the collision body and contact point dynamics. @details The energy is expected to decrease slowly when penetrating into the ground, but should stay constant otherwise. Then, the equilibrium point must also match the physics. Note that the friction model is not assessed here. """ # Create the robot robot, weight, height, joint_idx, _ = self._setup(shape) # Create, initialize, and configure the engine engine = jiminy.Engine() self._setup_controller_and_engine(engine, robot) # Set some extra options of the engine, to avoid assertion failure # because of problem regularization and outliers engine_options = engine.get_options() engine_options['contacts']['transitionEps'] = 1.0e-6 engine_options["stepper"]["controllerUpdatePeriod"] = self.dtMax engine.set_options(engine_options) # Run simulation and extract some information from log data x0 = neutral_state(robot, split=False) x0[2] = 1.0 tf = 1.5 _, x_jiminy = simulate_and_get_state_evolution( engine, tf, x0, split=False) q_z_jiminy = x_jiminy[:, 2] v_z_jiminy = x_jiminy[:, 9] penetration_depth = np.minimum(q_z_jiminy - height, 0.0) # Total energy and derivative log_data, _ = engine.get_log() E_robot = log_data['HighLevelController.energy'] E_contact = 1 / 2 * self.k_contact * penetration_depth ** 2 E_tot = E_robot + E_contact E_diff_robot = np.concatenate(( np.diff(E_robot) / self.dtMax, np.zeros((1,), dtype=E_robot.dtype))) E_diff_tot = savgol_filter(E_tot, 201, 2, deriv=1, delta=self.dtMax) # Check that the total energy never increases. # One must use a specific, less restrictive, tolerance, because of # numerical differentiation and filtering error. self.assertTrue(np.all(E_diff_tot < 1.0e-3)) # Check that the energy of robot only increases when the robot is # moving upward while still in the ground. This is done by check # that there is not two consecutive samples violating this law. # Note that the energy must be non-zero to this test to make # sense, otherwise the integration error and log accuracy makes # the test fail. tolerance_depth = 1e-9 self.assertTrue(np.all(np.diff(np.where( (abs(E_diff_robot) > tolerance_depth) & ((E_diff_robot > 0.0) != \ ((v_z_jiminy > 0.0) & (penetration_depth < 0.0))))[0]) > 1)) # Compare the numerical and analytical equilibrium state. f_ext_z = engine.system_state.f_external[joint_idx].linear[2] self.assertTrue(np.allclose(f_ext_z, weight, atol=TOLERANCE)) self.assertTrue(np.allclose( -penetration_depth[-1], weight / self.k_contact, atol=TOLERANCE))
def test_imu_sensor(self): """ @brief Test IMU sensor on pendulum motion. @details Note that the actual expected solution of the pendulum motion is used to compute the expected IMU data, instead of the result of the simulation done by jiminy itself. So this test is checking at the same time that the result of the simulation matches the solution, and that the sensor IMU data are valid. Though it is redundant, it validates that an IMU mounted on a pendulum gives the signal one would expect from an IMU on a pendulum, which is what a user would expect. Moreover, Jiminy output log does not feature the acceleration - to this test is indirectly checking that the acceleration computed by jiminy is valid. @remark Since we don't have a simple analytical expression for the solution of a (nonlinear) pendulum motion, we perform the simulation in python, with the same integrator. """ # Add IMU imu_sensor = jiminy.ImuSensor("PendulumLink") self.robot.attach_sensor(imu_sensor) imu_sensor.initialize("PendulumLink") # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() engine.initialize(self.robot) x0 = np.array([0.1, 0.1]) tf = 2.0 # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] quat_jiminy = np.stack( [log_data['PendulumLink.Quat' + s] for s in ['x', 'y', 'z', 'w']], axis=-1) gyro_jiminy = np.stack( [log_data['PendulumLink.Gyro' + s] for s in ['x', 'y', 'z']], axis=-1) accel_jiminy = np.stack( [log_data['PendulumLink.Accel' + s] for s in ['x', 'y', 'z']], axis=-1) # System dynamics: get length and inertia l = -self.robot.pinocchio_model_th.inertias[1].lever[2] g = self.robot.pinocchio_model.gravity.linear[2] # Pendulum dynamics def dynamics(t, x): return np.stack([x[..., 1], g / l * np.sin(x[..., 0])], axis=-1) # Integrate this non-linear dynamics x_rk_python = integrate_dynamics(time, x0, dynamics) # Compute sensor acceleration, i.e. acceleration in polar coordinates theta = x_rk_python[:, 0] dtheta = x_rk_python[:, 1] # Acceleration: to resolve algebraic loop (current acceleration is # function of input which itself is function of sensor signal, sensor # data is computed using q_t, v_t, a_(t-1) ddtheta = np.concatenate((np.zeros(1), dynamics(0.0, x_rk_python)[:-1, 1])) expected_accel = np.stack([ -l * ddtheta + g * np.sin(theta), np.zeros_like(theta), l * dtheta**2 - g * np.cos(theta) ], axis=-1) expected_gyro = np.stack( [np.zeros_like(theta), dtheta, np.zeros_like(theta)], axis=-1) expected_quat = np.stack([ Quaternion(rpyToMatrix(np.array([0., t, 0.]))).coeffs() for t in theta ], axis=0) # Compare sensor signal, ignoring first iterations that correspond to system initialization self.assertTrue( np.allclose(expected_quat[2:, :], quat_jiminy[2:, :], atol=TOLERANCE)) self.assertTrue( np.allclose(expected_gyro[2:, :], gyro_jiminy[2:, :], atol=TOLERANCE)) self.assertTrue( np.allclose(expected_accel[2:, :], accel_jiminy[2:, :], atol=TOLERANCE))
def test_sensor_delay(self): """ @brief Test sensor delay for an IMU sensor on a simple pendulum. """ # Configure the IMU imu_options = self.imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 0 imu_options['delay'] = 0.0 self.imu_sensor.set_options(imu_options) # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot) # Configure the engine: No gravity + Continuous time simulation engine_options = engine.get_options() engine_options["stepper"]["sensorsUpdatePeriod"] = 1.0e-3 engine.set_options(engine_options) # Run simulation and extract imu data x0 = np.array([0.1, 0.0]) tf = 2.0 time, imu_jiminy = \ SimulateSimplePendulum._simulate_and_get_imu_data_evolution(engine, tf, x0, split=False) # Deduce shifted imu data imu_jiminy_shifted_0 = interp1d(time, imu_jiminy, kind='zero', bounds_error=False, fill_value=imu_jiminy[0], axis=0)(time - 1.0e-2) imu_jiminy_shifted_1 = interp1d(time, imu_jiminy, kind='linear', bounds_error=False, fill_value=imu_jiminy[0], axis=0)(time - 1.0e-2) # Configure the IMU imu_options = self.imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 0 imu_options['delay'] = 1.0e-2 self.imu_sensor.set_options(imu_options) # Run simulation and extract imu data time, imu_jiminy_delayed_0 = \ SimulateSimplePendulum._simulate_and_get_imu_data_evolution(engine, tf, x0, split=False) # Configure the IMU imu_options = self.imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 1 imu_options['delay'] = 1.0e-2 self.imu_sensor.set_options(imu_options) # Run simulation time, imu_jiminy_delayed_1 = \ SimulateSimplePendulum._simulate_and_get_imu_data_evolution(engine, tf, x0, split=False) # Compare sensor signals self.assertTrue( np.mean(imu_jiminy_delayed_0 - imu_jiminy_shifted_0) < 1.0e-5) self.assertTrue( np.allclose(imu_jiminy_delayed_1, imu_jiminy_shifted_1, atol=TOLERANCE))
def test_flexibility_rotor_inertia(self): """ @brief Test the addition of a flexibility in the system. @details This test asserts that, by adding a flexibility and a rotor inertia, the output is 'sufficiently close' to a SEA system: see 'note_on_flexibli_model.pdf' for more information as to why this is not a true equality. """ # Controller: PD controller on motor. k_control = 100.0 nu_control = 1.0 def computeCommand(t, q, v, sensor_data, u): u[:] = -k_control * q[4] - nu_control * v[3] def internalDynamics(t, q, v, sensor_data, u): u[:] = 0.0 # Physical parameters: rotor inertia, spring stiffness and damping. J = 0.1 k = 20.0 nu = 0.1 # Enable flexibility model_options = self.robot.get_model_options() model_options["dynamics"]["enableFlexibleModel"] = True model_options["dynamics"]["flexibilityConfig"] = [{ 'jointName': "PendulumJoint", 'stiffness': k * np.ones(3), 'damping': nu * np.ones(3) }] self.robot.set_model_options(model_options) # Enable rotor inertia motor_options = self.robot.get_motors_options() motor_options["PendulumJoint"]['enableRotorInertia'] = True motor_options["PendulumJoint"]['rotorInertia'] = J self.robot.set_motors_options(motor_options) controller = jiminy.ControllerFunctor(computeCommand, internalDynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity engine.set_options(engine_options) # To avoid having to handle angle conversion, # start with an initial velocity for the output mass. v_init = 0.1 x0 = np.array([0.0, 0.0, 0.0, 1.0, 0.0, 0.0, v_init, 0.0, 0.0]) tf = 10.0 # Run simulation engine.simulate(tf, x0) # Get log data log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Convert quaternion to RPY x_jiminy = np.stack([ np.concatenate( (matrixToRpy(Quaternion(x[:4][:, np.newaxis]).matrix()).astype( x.dtype, copy=False), x[4:])) for x in x_jiminy ], axis=0) # First, check that there was no motion other than along the Y axis. self.assertTrue(np.allclose(x_jiminy[:, [0, 2, 4, 6]], 0)) # Now let's group x_jiminy to match the analytical system: # flexibility angle, pendulum angle, flexibility velocity, pendulum velocity x_jiminy_extract = x_jiminy[:, [1, 3, 5, 7]] # And let's simulate the system: a perfect SEA system. pnc_model = self.robot.pinocchio_model_th I = pnc_model.inertias[1].mass * pnc_model.inertias[1].lever[2]**2 # Write system dynamics A = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [ -k * (1 / I + 1 / J), k_control / J, -nu * (1 / I + 1 / J), nu_control / J ], [k / J, -k_control / J, nu / J, -nu_control / J]]) x_analytical = np.stack( [expm(A * t).dot(x_jiminy_extract[0]) for t in time], axis=0) # This test has a specific tolerance because we know the dynamics don't exactly # match: they are however very close, since the inertia of the flexible element # is negligible before I. TOLERANCE = 1e-4 self.assertTrue( np.allclose(x_jiminy_extract, x_analytical, atol=TOLERANCE))
def test_sensor_noise_bias(self): """ @brief Test sensor noise and bias for an IMU sensor on a simple pendulum in static pose. """ # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot) # Configure the engine: No gravity engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine.set_options(engine_options) # Configure the IMU imu_options = self.imu_sensor.get_options() imu_options['noiseStd'] = np.linspace(0.0, 0.2, 9) imu_options['bias'] = np.linspace(0.0, 1.0, 9) self.imu_sensor.set_options(imu_options) # Run simulation and extract log data x0 = np.array([0.0, 0.0]) tf = 200.0 _, quat_jiminy, gyro_jiminy, accel_jiminy = \ SimulateSimplePendulum._simulate_and_get_imu_data_evolution(engine, tf, x0, split=True) # Convert quaternion to a rotation vector. quat_axis = np.stack( [log3(Quaternion(q[:, np.newaxis]).matrix()) for q in quat_jiminy], axis=0) # Estimate the quaternion noise and bias # Because the IMU rotation is identity, the resulting rotation will # simply be R_b R_noise. Since R_noise is a small rotation, we can # consider that the resulting rotation is simply the rotation resulting # from the sum of the rotation vector (this is only true at the first # order) and thus directly recover the unbiased sensor data. quat_axis_bias = np.mean(quat_axis, axis=0) quat_axis_std = np.std(quat_axis, axis=0) # Remove sensor rotation bias from gyro / accel data quat_rot_bias = exp3(quat_axis_bias) gyro_jiminy = np.vstack([quat_rot_bias @ v for v in gyro_jiminy]) accel_jiminy = np.vstack([quat_rot_bias @ v for v in accel_jiminy]) # Estimate the gyroscope and accelerometer noise and bias gyro_std = np.std(gyro_jiminy, axis=0) gyro_bias = np.mean(gyro_jiminy, axis=0) accel_std = np.std(accel_jiminy, axis=0) accel_bias = np.mean(accel_jiminy, axis=0) # Compare estimated sensor noise and bias with the configuration self.assertTrue( np.allclose(imu_options['noiseStd'][:3], quat_axis_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][:3], quat_axis_bias, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['noiseStd'][3:-3], gyro_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][3:-3], gyro_bias, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['noiseStd'][-3:], accel_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][-3:], accel_bias, atol=1.0e-2))
def _test_friction_model(self, shape): """ @brief Validate the friction model. @details The transition between dry, dry-viscous, and viscous friction is assessed. The energy variation and the steady state are also compared to the theoretical model. """ # Create the robot and engine robot, weight, height, *_ = self._setup(shape) # Create, initialize, and configure the engine engine = jiminy.Engine() self._setup_controller_and_engine(engine, robot) # Set some extra options of the engine engine_options = engine.get_options() engine_options['contacts']['transitionEps'] = 1.0e-6 engine_options['contacts']['friction'] = self.friction engine_options['contacts']['transitionVelocity'] = self.transtion_vel engine_options["stepper"]["controllerUpdatePeriod"] = self.dtMax engine.set_options(engine_options) # Register an impulse of force t0, dt, Fx = 0.05, 0.8, 5.0 F = np.array([Fx, 0.0, 0.0, 0.0, 0.0, 0.0]) engine.register_force_impulse(self.body_name, t0, dt, F) # Run simulation x0 = neutral_state(robot, split=False) x0[2] = height tf = 1.5 time, _, v_jiminy = simulate_and_get_state_evolution( engine, tf, x0, split=True) v_x_jiminy = v_jiminy[:, 0] # Validate the stiction model: check the transition between dry and # viscous friction because of stiction phenomena. log_data, _ = engine.get_log() acceleration = log_data[ 'HighLevelController.currentFreeflyerAccelerationLinX'] jerk = np.diff(acceleration) / np.diff(time) snap = np.diff(jerk) / np.diff(time[1:]) snap_rel = np.abs(snap / np.max(snap)) snap_disc = time[1:-1][snap_rel > 1.0e-5] snap_disc = snap_disc[np.concatenate(( [False], np.diff(snap_disc) > 2 * self.dtMax))] snap_disc_analytical_dry = time[( (v_x_jiminy > (self.transtion_vel - 2.0e-5)) & (v_x_jiminy < (self.transtion_vel + 2.0e-5)))] snap_disc_analytical = np.sort(np.concatenate( (snap_disc_analytical_dry, np.array([t0, t0 + self.dtMax, t0 + dt, t0 + dt + self.dtMax])))) snap_disc_analytical = snap_disc_analytical[np.concatenate(( [False], np.diff(snap_disc_analytical) > 2 * self.dtMax))] self.assertTrue(len(snap_disc) == len(snap_disc_analytical)) self.assertTrue(np.allclose( snap_disc, snap_disc_analytical, atol=2*self.dtMax)) # Check that the energy increases only when the force is applied tolerance_E = 1e-9 E_robot = log_data['HighLevelController.energy'] E_diff_robot = np.concatenate(( np.diff(E_robot) / np.diff(time), np.zeros((1,), dtype=E_robot.dtype))) E_inc_range = time[np.where(E_diff_robot > tolerance_E)[0][[0, -1]]] E_inc_range_analytical = np.array([t0, t0 + dt - self.dtMax]) self.assertTrue(np.allclose( E_inc_range, E_inc_range_analytical, atol=tolerance_E)) # Check that the steady state matches the theory. # Note that a specific tolerance is used for the acceleration since the # steady state is not perfectly reached. tolerance_acc = 1e-6 v_steady = v_x_jiminy[np.isclose(time, t0 + dt)] v_steady_analytical = Fx / (self.friction * weight) a_steady = acceleration[ (time > t0 + dt - self.dtMax) & (time < t0 + dt + self.dtMax)] self.assertTrue(len(a_steady) == 1) self.assertTrue(a_steady < tolerance_acc) self.assertTrue(np.allclose( v_steady, v_steady_analytical, atol=TOLERANCE))
def test_pendulum_force_impulse(self): """ @brief Validate the impulse-momentum theorem @details The analytical expression for the solution is exact for impulse of force that are perfect dirac functions. """ # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() engine.initialize(self.robot) # Analytical solution pnc_model = self.robot.pinocchio_model_th mass = pnc_model.inertias[1].mass length = abs(pnc_model.inertias[1].lever[2]) axis = np.array([0.0, 1.0, 0.0]) def sys(t): q = 0.0 v = 0.0 for i in range(len(F_register)): if t > F_register[i]["t"]: pos = length * np.array( [-np.cos(q - np.pi / 2), 0.0, np.sin(q - np.pi / 2)]) n = pos / np.linalg.norm(pos) d = np.cross(axis, n) F_proj = F_register[i]["F"][:3].T.dot(d) v_delta = ((F_proj + F_register[i]["F"][4] / length) * min( F_register[i]["dt"], t - F_register[i]["t"])) / mass if (i < len(F_register) - 1): q += (v + v_delta) * max( 0, min(t, F_register[i + 1]["t"]) - (F_register[i]["t"] + F_register[i]["dt"])) else: q += (v + v_delta) * max( 0, t - F_register[i]["t"] + F_register[i]["dt"]) q += (v + v_delta / 2) * min(F_register[i]["dt"], t - F_register[i]["t"]) v += v_delta else: break return np.array([q, v]) # Register a set of impulse forces np.random.seed(0) F_register = [{ "t": 0.0, "dt": 2.0e-3, "F": np.array([1.0e3, 0.0, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.1, "dt": 1.0e-3, "F": np.array([0.0, 1.0e3, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.2, "dt": 2.0e-5, "F": np.array([-1.0e5, 0.0, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.2, "dt": 2.0e-4, "F": np.array([0.0, 0.0, 1.0e4, 0.0, 0.0, 0.0]) }, { "t": 0.4, "dt": 1.0e-5, "F": np.array([0.0, 0.0, 0.0, 0.0, 2.0e4, 0.0]) }, { "t": 0.4, "dt": 1.0e-5, "F": np.array([1.0e3, 1.0e4, 3.0e4, 0.0, 0.0, 0.0]) }, { "t": 0.6, "dt": 1.0e-6, "F": (2.0 * (np.random.rand(6) - 0.5)) * 4.0e6 }, { "t": 0.8, "dt": 2.0e-6, "F": np.array([0.0, 0.0, 2.0e5, 0.0, 0.0, 0.0]) }] for f in F_register: engine.register_force_impulse("PendulumLink", f["t"], f["dt"], f["F"]) # Set the initial state and simulation duration x0 = np.array([0.0, 0.0]) tf = 1.0 # Configure the engine: No gravity + Continuous time simulation engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['HighLevelController.' + s] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute the associated analytical solution x_analytical = np.stack([sys(t) for t in time], axis=0) # Check if t = t_start / t_end were breakpoints (the accuracy for the log is 1us) t_break_err = np.concatenate([ np.array([ min(abs(f["t"] - log_data['Global.Time'])), min(abs(f["t"] + f["dt"] - log_data['Global.Time'])) ]) for f in F_register ]) self.assertTrue(np.allclose(t_break_err, 0.0, atol=1e-12)) # This test has a specific tolerance because the analytical solution is an # approximation since in practice, the external force is not constant over # its whole application duration but rather depends on the orientation of # the pole. For simplicity, the effect of the impulse forces is assumed # to be constant. As a result, the tolerance cannot be tighter. TOLERANCE = 1e-6 self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE)) # Configure the engine: No gravity + Discrete time simulation engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Configure the engine: Continuous time simulation engine_options["stepper"]["sensorsUpdatePeriod"] = 1.0e-3 engine_options["stepper"]["controllerUpdatePeriod"] = 1.0e-3 engine.set_options(engine_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute the associated analytical solution x_analytical = np.stack([sys(t) for t in time], axis=0) # Check if t = t_start / t_end were breakpoints (the accuracy for the log is 1us) t_break_err = np.concatenate([ np.array([ min(abs(f["t"] - log_data['Global.Time'])), min(abs(f["t"] + f["dt"] - log_data['Global.Time'])) ]) for f in F_register ]) self.assertTrue(np.allclose(t_break_err, 0.0, atol=1e-12)) # Compare the numerical and analytical solution TOLERANCE = 1e-6 self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE))
# Instantiate the controller def computeCommand(t, q, v, sensors_data, u): u[0] = 0.0 def internalDynamics(t, q, v, sensors_data, u): u[:] = 0.0 controller = jiminy.ControllerFunctor(computeCommand, internalDynamics) controller.initialize(robot) # Instantiate the engine engine = jiminy.Engine() engine.initialize(robot, controller) # ######################### Configuration the simulation ################################ robot_options = robot.get_options() engine_options = engine.get_options() ctrl_options = controller.get_options() robot_options["telemetry"]["enableImuSensors"] = True engine_options["telemetry"]["enableConfiguration"] = True engine_options["telemetry"]["enableVelocity"] = True engine_options["telemetry"]["enableAcceleration"] = True engine_options["telemetry"]["enableTorque"] = True engine_options["telemetry"]["enableEnergy"] = True engine_options["world"]["gravity"][2] = -9.81
def test_flexibility_armature(self): """ @brief Test the addition of a flexibility in the system. @details This test asserts that, by adding a flexibility and a rotor inertia, the output is 'sufficiently close' to a SEA system: see 'note_on_flexibilty_model.pdf' for more information as to why this is not a true equality. """ # Physical parameters: rotor inertia, spring stiffness and damping. J = 0.1 k = 20.0 nu = 0.1 # Enable flexibility model_options = self.robot.get_model_options() model_options["dynamics"]["enableFlexibleModel"] = True model_options["dynamics"]["flexibilityConfig"] = [{ 'frameName': "PendulumJoint", 'stiffness': k * np.ones(3), 'damping': nu * np.ones(3) }] self.robot.set_model_options(model_options) # Enable rotor inertia motor_options = self.robot.get_motors_options() motor_options["PendulumJoint"]['enableArmature'] = True motor_options["PendulumJoint"]['armature'] = J self.robot.set_motors_options(motor_options) # Create an engine: PD controller on motor and no internal dynamics k_control, nu_control = 100.0, 1.0 def ControllerPD(t, q, v, sensors_data, command): command[:] = -k_control * q[4] - nu_control * v[3] engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot, compute_command=ControllerPD) # Configure the engine engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine_options["world"]["gravity"] = np.zeros(6) engine.set_options(engine_options) # Run simulation and extract some information from log data. # Note that to avoid having to handle angle conversion, start with an # initial velocity for the output mass. v_init = 0.1 x0 = np.array([0.0, 0.0, 0.0, 1.0, 0.0, 0.0, v_init, 0.0, 0.0]) tf = 10.0 time, x_jiminy = simulate_and_get_state_evolution(engine, tf, x0, split=False) # Convert quaternion to RPY x_jiminy = np.stack([ np.concatenate(( matrixToRpy(Quaternion(x[:4][:, np.newaxis]).matrix())\ .astype(x.dtype, copy=False), x[4:] )) for x in x_jiminy ], axis=0) # First, check that there was no motion other than along the Y axis. self.assertTrue(np.allclose(x_jiminy[:, [0, 2, 4, 6]], 0)) # Now let's group x_jiminy to match the analytical system: # flexibility angle, pendulum angle, flexibility velocity, pendulum # velocity. x_jiminy_extract = x_jiminy[:, [1, 3, 5, 7]] # Simulate the system: a perfect SEA system. A = np.array([[0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], [ -k * (1 / self.I + 1 / J), k_control / J, -nu * (1 / self.I + 1 / J), nu_control / J ], [k / J, -k_control / J, nu / J, -nu_control / J]]) x_analytical = np.stack( [scipy.linalg.expm(A * t).dot(x_jiminy_extract[0]) for t in time], axis=0) # This test has a specific tolerance because we know the dynamics don't exactly # match: they are however very close, since the inertia of the flexible element # is negligible before I. self.assertTrue(np.allclose(x_jiminy_extract, x_analytical, atol=1e-4))
def test_pendulum_force_impulse(self): """ @brief Validate the impulse-momentum theorem @details The analytical expression for the solution is exact for impulse of force that are perfect dirac functions. """ # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() setup_controller_and_engine(engine, self.robot) # Analytical solution def sys(t): q = 0.0 v = 0.0 for i, force in enumerate(F_register): if t > force["t"]: pos = self.l * np.array( [-np.cos(q - np.pi / 2), 0.0, np.sin(q - np.pi / 2)]) n = pos / np.linalg.norm(pos) d = np.cross(self.axis, n) F_proj = force["F"][:3].T.dot(d) v_delta = ((F_proj + force["F"][4] / self.l) * min(force["dt"], t - force["t"])) / self.m if (i < len(F_register) - 1): q += (v + v_delta) * max(0, min(t, F_register[i + 1]["t"]) - \ (force["t"] + force["dt"])) else: q += (v + v_delta) * max(0, t - force["t"] + force["dt"]) q += (v + v_delta / 2) * min(force["dt"], t - force["t"]) v += v_delta else: break return np.array([q, v]) # Register a set of impulse forces np.random.seed(0) F_register = [{ "t": 0.0, "dt": 2.0e-3, "F": np.array([1.0e3, 0.0, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.1, "dt": 1.0e-3, "F": np.array([0.0, 1.0e3, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.2, "dt": 2.0e-5, "F": np.array([-1.0e5, 0.0, 0.0, 0.0, 0.0, 0.0]) }, { "t": 0.2, "dt": 2.0e-4, "F": np.array([0.0, 0.0, 1.0e4, 0.0, 0.0, 0.0]) }, { "t": 0.4, "dt": 1.0e-5, "F": np.array([0.0, 0.0, 0.0, 0.0, 2.0e4, 0.0]) }, { "t": 0.4, "dt": 1.0e-5, "F": np.array([1.0e3, 1.0e4, 3.0e4, 0.0, 0.0, 0.0]) }, { "t": 0.6, "dt": 1.0e-6, "F": (2.0 * (np.random.rand(6) - 0.5)) * 4.0e6 }, { "t": 0.8, "dt": 2.0e-6, "F": np.array([0.0, 0.0, 2.0e5, 0.0, 0.0, 0.0]) }] for f in F_register: engine.register_force_impulse("PendulumLink", f["t"], f["dt"], f["F"]) # Configure the engine: No gravity + Continuous time simulation engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Run simulation and extract some information from log data x0 = np.array([0.0, 0.0]) tf = 1.0 time, x_jiminy = simulate_and_get_state_evolution(engine, tf, x0, split=False) # Compute the associated analytical solution x_analytical = np.stack([sys(t) for t in time], axis=0) # Check if t = t_start / t_end were breakpoints. # Note that the accuracy for the log is 1us. t_break_err = np.concatenate([ np.array( [min(abs(f["t"] - time)), min(abs(f["t"] + f["dt"] - time))]) for f in F_register ]) self.assertTrue(np.allclose(t_break_err, 0.0, atol=TOLERANCE)) # This test has a specific tolerance because the analytical solution is # an approximation since in practice, the external force is not # constant over its whole application duration but rather depends on # the orientation of the pole. For simplicity, the effect of the # impulse forces is assumed to be constant. As a result, the tolerance # cannot be tighter. self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=1e-6)) # Configure the engine: No gravity + Discrete time simulation engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine_options["stepper"]["sensorsUpdatePeriod"] = 0.0 engine_options["stepper"]["controllerUpdatePeriod"] = 0.0 engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Configure the engine: Continuous time simulation engine_options["stepper"]["sensorsUpdatePeriod"] = 1.0e-3 engine_options["stepper"]["controllerUpdatePeriod"] = 1.0e-3 engine.set_options(engine_options) # Run simulation time, x_jiminy = simulate_and_get_state_evolution(engine, tf, x0, split=False) # Compute the associated analytical solution x_analytical = np.stack([sys(t) for t in time], axis=0) # Check if t = t_start / t_end were breakpoints t_break_err = np.concatenate([ np.array( [min(abs(f["t"] - time)), min(abs(f["t"] + f["dt"] - time))]) for f in F_register ]) self.assertTrue(np.allclose(t_break_err, 0.0, atol=TOLERANCE)) # Compare the numerical and analytical solution self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=1e-6))
def test_freeflyer_multiple_constraints(self): """ @brief Test having several constraints at once. @details This test features: - a freeflyer with a fixed body constraint on the freeflyer (this gives a non-trivial constraint to solve to effectively cancel the freeflyer) - a fixed body constaint on the output mass. """ # Rebuild the model with a freeflyer. self.robot = load_urdf_default(self.urdf_path, self.motor_names, has_freeflyer = True) # Set same spings as usual def compute_command(t, q, v, sensors_data, u): u[:] = 0.0 def internal_dynamics(t, q, v, sensors_data, u): u[6:] = - self.k * q[7:] - self.nu * v[6:] controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) # Disable gravity. engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) # Turn off gravity engine.set_options(engine_options) # Add a kinematic constraints. freeflyer_constraint = jiminy.FixedFrameConstraint("world") self.robot.add_constraint("world", freeflyer_constraint) fix_mass_constraint = jiminy.FixedFrameConstraint("SecondMass") self.robot.add_constraint("fixMass", fix_mass_constraint) # Initialize with zero freeflyer velocity... x_init = np.zeros(17) x_init[7:9] = self.x0[:2] x_init[-2:] = self.x0[2:] # ... and a "random" (but fixed) freeflyer quaternion np.random.seed(42) x_init[:7] = np.random.rand(7) x_init[3:7] /= np.linalg.norm(x_init[3:7]) # Run simulation engine.simulate(self.tf, x_init) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Verify that freeflyer hasn't moved. self.assertTrue(np.allclose(x_jiminy[:, 9:15], 0, atol=TOLERANCE)) self.assertTrue(np.allclose(x_jiminy[:, :7], x_jiminy[0, :7], atol=TOLERANCE)) # Compute analytical solution - the acceleration of the second mass should # be the opposite of that of the first. self.A[3, :] = -self.A[2, :] x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0) # Compare the numerical and analytical solutions self.assertTrue(np.allclose(x_jiminy[:, [7,8,15,16]], x_analytical, atol=TOLERANCE))
def test_external_force_profile(self): """ @brief Test adding an external force profile function to the system. """ # Set same springs as usual def compute_command(t, q, v, sensors_data, u): u[:] = 0.0 def internal_dynamics(t, q, v, sensors_data, u): u[:] = - self.k * q - self.nu * v controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) # Define external force: a spring linking the second mass to the origin. k_ext = 50 def external_force(t, q, v, f): f[0] = - k_ext * (q[0] + q[1]) engine.register_force_profile("SecondMass", external_force) # Run simulation engine.simulate(self.tf, self.x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['.'.join(['HighLevelController', s])] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Compute analytical solution # Add extra external force to second mass. m = self.robot.pinocchio_model_th.inertias[2].mass self.A[3, :] += np.array([-k_ext / m, -k_ext / m, 0, 0]) x_analytical = np.stack([expm(self.A * t).dot(self.x0) for t in time], axis=0) # Compare the numerical and analytical solutions self.assertTrue(np.allclose(x_jiminy, x_analytical, atol=TOLERANCE)) # Now apply a force / torque to a non-trivial rotation to verify internal projection of the force # onto the joints. # Rebuild the model with a freeflyer. self.robot = load_urdf_default(self.urdf_path, self.motor_names, has_freeflyer = True) # Initialize with zero freeflyer velocity... x_init = np.zeros(17) x_init[7:9] = self.x0[:2] x_init[-2:] = self.x0[2:] # ... and a "random" (but fixed) freeflyer quaternion np.random.seed(42) x_init[:7] = np.random.rand(7) x_init[3:7] /= np.linalg.norm(x_init[3:7]) # Define a wrench in the local frame. f_local = np.array([1.0, 1.0, 0., 0., 0.5, 0.5]) idx = self.robot.pinocchio_model.getJointId("FirstJoint") def external_force(t, q, v, f): # Rotate the wrench to project it to the world frame. R = self.robot.pinocchio_data.oMi[idx].rotation f[:3] = R @ f_local[:3] f[3:] = R @ f_local[3:] def internal_dynamics(t, q, v, sensors_data, u): # Apply torque on freeflyer to make it spin. self.assertTrue(np.allclose(np.linalg.norm(q[3:7]), 1.0, atol=TOLERANCE)) u[3:6] = 1.0 def compute_command(t, q, v, sensors_data, u): # Check force computation: is the local external force what we expected ? # Exclude first computation as simulator init is bit peculiar. if t > 0.0: self.assertTrue(np.allclose(engine.system_state.f_external[idx].vector, f_local, atol=TOLERANCE)) u[:] = 0.0 controller = jiminy.ControllerFunctor(compute_command, internal_dynamics) controller.initialize(self.robot) engine = jiminy.Engine() engine.initialize(self.robot, controller) engine.register_force_profile("FirstJoint", external_force) engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine_options["stepper"]["sensorsUpdatePeriod"] = 1e-3 engine_options["stepper"]["controllerUpdatePeriod"] = 1e-3 engine.set_options(engine_options) engine.simulate(self.tf, x_init)
def test_sensor_delay(self): """ @brief Test sensor delay for an IMU sensor on a simple pendulum. """ # Add IMU. imu_sensor = jiminy.ImuSensor("PendulumLink") self.robot.attach_sensor(imu_sensor) imu_sensor.initialize("PendulumLink") # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() engine.initialize(self.robot) # Configure the engine: No gravity + Continuous time simulation engine_options = engine.get_options() engine_options["stepper"]["sensorsUpdatePeriod"] = 1.0e-3 engine.set_options(engine_options) x0 = np.array([0.1, 0.0]) tf = 2.0 # Configure the IMU imu_options = imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 0 imu_options['delay'] = 0.0 imu_sensor.set_options(imu_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] imu_jiminy = np.stack([ log_data['PendulumLink.' + f] for f in jiminy.ImuSensor.fieldnames ], axis=-1) imu_jiminy_shifted_0 = interp1d(time, imu_jiminy, kind='zero', bounds_error=False, fill_value=imu_jiminy[0], axis=0)(time - 1.0e-2) imu_jiminy_shifted_1 = interp1d(time, imu_jiminy, kind='linear', bounds_error=False, fill_value=imu_jiminy[0], axis=0)(time - 1.0e-2) # Configure the IMU imu_options = imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 0 imu_options['delay'] = 1.0e-2 imu_sensor.set_options(imu_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() imu_jiminy_delayed_0 = np.stack([ log_data['PendulumLink.' + f] for f in jiminy.ImuSensor.fieldnames ], axis=-1) # Configure the IMU imu_options = imu_sensor.get_options() imu_options['delayInterpolationOrder'] = 1 imu_options['delay'] = 1.0e-2 imu_sensor.set_options(imu_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() imu_jiminy_delayed_1 = np.stack([ log_data['PendulumLink.' + f] for f in jiminy.ImuSensor.fieldnames ], axis=-1) # Compare sensor signals self.assertTrue( np.mean(imu_jiminy_delayed_0 - imu_jiminy_shifted_0) < 1.0e-5) self.assertTrue( np.allclose(imu_jiminy_delayed_1, imu_jiminy_shifted_1, atol=TOLERANCE))
def test_sensor_noise_bias(self): """ @brief Test sensor noise and bias for an IMU sensor on a simple pendulum in static pose. """ # Add IMU. imu_sensor = jiminy.ImuSensor("PendulumLink") self.robot.attach_sensor(imu_sensor) imu_sensor.initialize("PendulumLink") # Create an engine: no controller and no internal dynamics engine = jiminy.Engine() engine.initialize(self.robot) x0 = np.array([0.0, 0.0]) tf = 200.0 # Configure the engine: No gravity engine_options = engine.get_options() engine_options["world"]["gravity"] = np.zeros(6) engine.set_options(engine_options) # Configure the IMU imu_options = imu_sensor.get_options() imu_options['noiseStd'] = np.linspace(0.0, 0.2, 9) imu_options['bias'] = np.linspace(0.0, 1.0, 9) imu_sensor.set_options(imu_options) # Run simulation engine.simulate(tf, x0) log_data, _ = engine.get_log() quat_jiminy = np.stack( [log_data['PendulumLink.Quat' + s] for s in ['x', 'y', 'z', 'w']], axis=-1) gyro_jiminy = np.stack( [log_data['PendulumLink.Gyro' + s] for s in ['x', 'y', 'z']], axis=-1) accel_jiminy = np.stack( [log_data['PendulumLink.Accel' + s] for s in ['x', 'y', 'z']], axis=-1) # Convert quaternion to a rotation vector. quat_axis = np.stack( [log3(Quaternion(q[:, np.newaxis]).matrix()) for q in quat_jiminy], axis=0) # Estimate the quaternion noise and bias # Because the IMU rotation is identity, the resulting rotation will # simply be R_b R_noise. Since R_noise is a small rotation, we can # consider that the resulting rotation is simply the rotation resulting # from the sum of the rotation vector (this is only true at the first # order) and thus directly recover the unbiased sensor data. quat_axis_bias = np.mean(quat_axis, axis=0) quat_axis_std = np.std(quat_axis, axis=0) # Remove sensor rotation bias from gyro / accel data quat_rot_bias = exp3(quat_axis_bias) gyro_jiminy = np.vstack([quat_rot_bias @ v for v in gyro_jiminy]) accel_jiminy = np.vstack([quat_rot_bias @ v for v in accel_jiminy]) # Estimate the gyroscope and accelerometer noise and bias gyro_std = np.std(gyro_jiminy, axis=0) gyro_bias = np.mean(gyro_jiminy, axis=0) accel_std = np.std(accel_jiminy, axis=0) accel_bias = np.mean(accel_jiminy, axis=0) # Compare estimated sensor noise and bias with the configuration self.assertTrue( np.allclose(imu_options['noiseStd'][:3], quat_axis_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][:3], quat_axis_bias, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['noiseStd'][3:-3], gyro_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][3:-3], gyro_bias, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['noiseStd'][-3:], accel_std, atol=1.0e-2)) self.assertTrue( np.allclose(imu_options['bias'][-3:], accel_bias, atol=1.0e-2))
def test_friction_model(self): """ @brief Validate the friction model. @details The transition between dry, dry-viscous, and viscous friction is assessed. The energy variation and the steady state are also compared to the theoretical model. """ # Create the engine engine = jiminy.Engine() engine.initialize(self.robot) engine_options = engine.get_options() engine_options['contacts']['stiffness'] = self.k_contact engine_options['contacts']['damping'] = self.nu_contact engine_options['contacts']['frictionDry'] = self.dry_friction engine_options['contacts']['frictionViscous'] = self.visc_friction engine_options['contacts']['frictionStictionVel'] = self.v_stiction engine_options['contacts']['frictionStictionRatio'] = self.r_stiction engine_options['contacts'][ 'transitionEps'] = 1.0 / self.k_contact # To avoid assertion failure because of problem regularization engine_options["stepper"]["dtMax"] = self.dtMax engine_options["stepper"]["logInternalStepperSteps"] = True engine.set_options(engine_options) # Extract some information about the engine and the robot mass = self.robot.pinocchio_model.inertias[-1].mass gravity = engine.get_options()['world']['gravity'][2] # Register a impulse of force t0 = 0.05 dt = 0.8 F = 5.0 engine.register_force_impulse("MassBody", t0, dt, np.array([F, 0.0, 0.0, 0.0, 0.0, 0.0])) # Run simulation x0 = np.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ]) # [TX,TY,TZ],[QX,QY,QZ,QW] tf = 1.5 engine.simulate(tf, x0) log_data, _ = engine.get_log() time = log_data['Global.Time'] x_jiminy = np.stack([log_data['HighLevelController.' + s] for s in self.robot.logfile_position_headers + \ self.robot.logfile_velocity_headers], axis=-1) # Validate the stiction model: # check the transition between dry and viscous friction because of stiction phenomena acceleration = log_data[ 'HighLevelController.currentFreeflyerAccelerationLinX'] jerk = np.diff(acceleration) / np.diff(time) snap = np.diff(jerk) / np.diff(time[1:]) snap_rel = np.abs(snap / np.max(snap)) snap_disc = time[1:-1][snap_rel > 2.0e-4] snap_disc_analytical_dry = log_data['Global.Time'][np.logical_and( x_jiminy[:, 7] > self.v_stiction - self.dtMax, x_jiminy[:, 7] < self.v_stiction + self.dtMax)] snap_disc_analytical_viscous = log_data['Global.Time'][np.logical_and( x_jiminy[:, 7] > (1.0 + self.r_stiction) * self.v_stiction - self.dtMax, x_jiminy[:, 7] < (1.0 + self.r_stiction) * self.v_stiction + self.dtMax)] snap_disc_analytical = np.sort( np.concatenate( (snap_disc_analytical_dry, snap_disc_analytical_viscous, np.array([t0, t0 + self.dtMax, t0 + dt, t0 + dt + self.dtMax])))) self.assertTrue(len(snap_disc) == len(snap_disc_analytical)) self.assertTrue( np.allclose(snap_disc, snap_disc_analytical, atol=1e-12)) # Check that the energy increases only when the force is applied E_robot = log_data['HighLevelController.energy'] E_diff_robot = np.concatenate((np.diff(E_robot) / np.diff(time), np.array([0.0], dtype=E_robot.dtype))) E_inc_range = log_data['Global.Time'][np.where( E_diff_robot > 1e-5)[0][[0, -1]]] E_inc_range_analytical = np.array([t0, t0 + dt - self.dtMax]) self.assertTrue( np.allclose(E_inc_range, E_inc_range_analytical, atol=5e-3)) # Check that the steady state matches the theory # Note that a specific tolerance is used for the acceleration since the steady state is not perfectly reached TOLERANCE_acc = 1e-5 v_steady = x_jiminy[log_data['Global.Time'] == t0 + dt, 7] v_steady_analytical = -F / (self.visc_friction * mass * gravity) a_steady = acceleration[np.logical_and( log_data['Global.Time'] > t0 + dt - self.dtMax, log_data['Global.Time'] < t0 + dt + self.dtMax)] self.assertTrue(len(a_steady) == 1) self.assertTrue(a_steady < TOLERANCE_acc) self.assertTrue( np.allclose(v_steady, v_steady_analytical, atol=TOLERANCE))
def test_fixed_body_constraint_armature(self): """ @brief Test fixed body constraint together with rotor inertia. """ # Create robot with freeflyer, set rotor inertia. robot = load_urdf_default(self.urdf_name, self.motors_names, has_freeflyer=True) # Enable rotor inertia J = 0.1 motor_options = robot.get_motors_options() motor_options["PendulumJoint"]['enableArmature'] = True motor_options["PendulumJoint"]['armature'] = J robot.set_motors_options(motor_options) # Set fixed body constraint. freeflyer_constraint = jiminy.FixedFrameConstraint("world") robot.add_constraint("world", freeflyer_constraint) # Create an engine: simulate a spring internal dynamics k_spring = 500 def spring_force(t, q, v, sensors_data, u_custom): u_custom[:] = -k_spring * q[-1] engine = jiminy.Engine() setup_controller_and_engine(engine, robot, internal_dynamics=spring_force) # Configure the engine engine_options = engine.get_options() engine_options["stepper"]["solver"] = "runge_kutta_dopri5" engine_options["stepper"]["tolAbs"] = TOLERANCE * 1e-1 engine_options["stepper"]["tolRel"] = TOLERANCE * 1e-1 engine_options["world"]["gravity"] = np.zeros(6) engine.set_options(engine_options) # Run simulation and extract some information from log data x0 = np.array([0.1, 0.0]) qInit, vInit = neutral_state(robot, split=True) qInit[-1], vInit[-1] = x0 xInit = np.concatenate((qInit, vInit)) tf = 2.0 time, q_jiminy, v_jiminy = simulate_and_get_state_evolution(engine, tf, xInit, split=True) # Analytical solution: dynamics should be unmodified by # the constraint, so we have a simple mass on a spring. I_eq = self.I + J A = np.array([[0, 1], [-k_spring / I_eq, 0]]) x_analytical = np.stack( [scipy.linalg.expm(A * t).dot(x0) for t in time], axis=0) self.assertTrue( np.allclose(q_jiminy[:, :-1], qInit[:-1], atol=TOLERANCE)) self.assertTrue( np.allclose(v_jiminy[:, :-1], vInit[:-1], atol=TOLERANCE)) self.assertTrue( np.allclose(q_jiminy[:, -1], x_analytical[:, 0], atol=TOLERANCE)) self.assertTrue( np.allclose(v_jiminy[:, -1], x_analytical[:, 1], atol=TOLERANCE))