def make_net2(): net = MultiLayerNet(is_use_dropout=False) net.add_layer(Layer.Conv2D(32, (3, 3), pad=1, input_size=(1, 64, 64)), initializer=Initializer.He(), activation=Layer.Relu()) net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) net.add_layer( Layer.Dense(128, initializer=Initializer.He(), activation=Layer.Relu())) net.add_layer(Layer.Dense(2, initializer=Initializer.He())) net.add_layer(Layer.SoftmaxWithLoss()) return net
def main(): (x_train, t_train), (x_test, t_test) = load_mnist(flatten=False) print(x_train.shape, t_train.shape) print(t_train[0]) net = MultiLayerNet(is_use_dropout=False) net.add_layer(Layer.Conv2D(16, (3, 3), pad=1, input_size=(1, 28, 28)), initializer=Initializer.He(), activation=Layer.Relu()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) net.add_layer(Layer.Conv2D(16, (3, 3), pad=1, initializer=Initializer.He())) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) net.add_layer(Layer.Dense(20, initializer=Initializer.He(), activation=Layer.Relu())) net.add_layer(Layer.Dropout(0.5)) net.add_layer(Layer.Dense(10)) net.add_layer(Layer.Dropout(0.5)) net.add_layer(Layer.SoftmaxWithLoss()) if gpu_enable: net.to_gpu() for k, v in net.params.items(): print(k, v.shape) result = net.train( x_train, t_train, x_test, t_test, batch_size=200, iters_num=100, print_epoch=1, evaluate_limit=500, is_use_progress_bar=True, optimizer=Optimizer.Adam(lr=0.001)) import pickle import datetime ## Save pickle with open(f"train_data_{str(datetime.datetime.now())[:-7].replace(':', '')}.pickle", "wb") as fw: pickle.dump(result, fw) # net.save_model() print("============================================")
def make_net1(): net = MultiLayerNet(is_use_dropout=False) net.add_layer(Layer.Conv2D(32, (3, 3), pad=1, input_size=(1, 128, 128)), initializer=Initializer.He()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) # net.add_layer(Layer.Conv2D(64, (3, 3), pad=1, initializer=Initializer.He())) # net.add_layer(Layer.BatchNormalization()) # net.add_layer(Layer.Relu()) # net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) net.add_layer(Layer.Conv2D(32, (3, 3), pad=1, initializer=Initializer.He())) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Pooling(pool_h=2, pool_w=2, stride=2)) net.add_layer( Layer.Dense(30, initializer=Initializer.He(), activation=Layer.Relu())) net.add_layer(Layer.Dropout(0.5)) net.add_layer(Layer.Dense(3)) net.add_layer(Layer.Dropout(0.5)) net.add_layer(Layer.SoftmaxWithLoss()) return net
y = np.dot(x, np.array([2, 1])) + 3 # y = y + (4 * np.random.random_sample((1,y.shape[0])) - 2).flatten() t = np.reshape(y, (y.shape[0], 1)) # print(x) return x, t x_data, t_data = make_sample_data_set_regression3() print(x_data[:3]) print(t_data[:3]) net = MultiLayerNet() net.add_layer(Layer.Dense(1, input_size=2, activation=Layer.IdentityWithLoss())) # net.add_layer(Layer.Dense(5, input_size = 2, activation=Layer.Relu() )) # net.add_layer(Layer.Dense(1)) x_train, t_train, x_test, t_test = shuffle_split_data(x_data, t_data, 0.2) print(net.params) # scaler = Scaler.StandardScaler() # x_train = scaler.fit_transform(x_train) # x_test = scaler.transform(x_test) result = net.train(x_train, t_train, x_test, t_test,
# y = y + (4 * np.random.random_sample((1,y.shape[0])) - 2).flatten() t = np.reshape(y, (y.shape[0], 1)) return x, t (x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True) print(x_train.shape, t_train.shape, x_test.shape, t_test.shape) x_data = np.append(x_train, x_test, axis=0) t_data = np.append(t_train, t_test, axis=0) net = MultiLayerNet(is_use_dropout=True, dropout_ratio=0.2) net.add_layer(Layer.Dense(30, input_size=784, initializer=Initializer.He())) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Dense(64), initializer=Initializer.He()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Dense(64), initializer=Initializer.He()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Dense(64), initializer=Initializer.He()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(Layer.Dense(64), initializer=Initializer.He()) net.add_layer(Layer.BatchNormalization()) net.add_layer(Layer.Relu()) net.add_layer(