Example #1
0
    algorithm.run()
    front = algorithm.get_result()

    # Plot front
    plot_front = Plot(
        title="Pareto front approximation. Problem: " + problem.get_name(),
        reference_front=problem.reference_front,
        axis_labels=problem.obj_labels,
    )
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Plot interactive front
    plot_front = InteractivePlot(
        title="Pareto front approximation. Problem: " + problem.get_name(),
        reference_front=problem.reference_front,
        axis_labels=problem.obj_labels,
    )
    plot_front.plot(front,
                    label=algorithm.label,
                    filename=algorithm.get_name())

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.label)
    print_variables_to_file(front, "VAR." + algorithm.label)

    print(f"Algorithm: {algorithm.get_name()}")
    print(f"Problem: {problem.get_name()}")
    print(f"Computing time: {algorithm.total_computing_time}")
if __name__ == "__main__":
    problem = Rastrigin(10)

    max_evaluations = 50000
    algorithm = NSGAII(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20.0),
        crossover=SBXCrossover(probability=0.9, distribution_index=20.0),
        termination_criterion=StoppingByEvaluations(
            max_evaluations=max_evaluations),
        dominance_comparator=DominanceComparator(),
    )

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, "FUN." + algorithm.get_name() + "-" + problem.get_name())
    print_variables_to_file(
        front, "VAR." + algorithm.get_name() + "-" + problem.get_name())

    print("Algorithm (continuous problem): " + algorithm.get_name())
    print("Problem: " + problem.get_name())
    print("Computing time: " + str(algorithm.total_computing_time))
Example #3
0
                crossover=SBXCrossover(probability=1.0, distribution_index=20),
                termination_criterion=StoppingEvaluator
                # termination_criterion = StoppingByQualityIndicator(quality_indicator=HyperVolume, expected_value=1,
                #                                                  degree=0.9)
                # selection = BinaryTournamentSelection()
            )
            """==========================调用算法模板进行种群进化========================="""
            # progress_bar = ProgressBarObserver(max=max_evaluations)
            # algorithm.observable.register(progress_bar)
            algorithm.run()
            front = algorithm.get_result()
            """==================================输出结果=============================="""

            # Save results to file
            fun_name = 'FUN.' + str(round_index) + '_' + algorithm.label
            print_function_values_to_file(front,
                                          os.path.join(target_dir, fun_name))
            var_name = 'VAR.' + str(round_index) + '_' + algorithm.label
            print_variables_to_file(front, os.path.join(target_dir, var_name))

            print(f'Algorithm: ${algorithm.get_name()}')
            print(f'Problem: ${problem.get_name()}')
            print(f'Computing time: ${algorithm.total_computing_time}')

            # print(search_round,round_index,total_search_round)
            search_round = int(StoppingEvaluator.evaluations / population)
            total_round = total_round - search_round
            print("real round: ", search_round, "idx: ", round_index, "left: ",
                  total_round)
            round_index = round_index + 1
from jmetal.algorithm.singleobjective.simulated_annealing import SimulatedAnnealing
from jmetal.operator import PolynomialMutation
from jmetal.problem.singleobjective.unconstrained import Rastrigin
from jmetal.util.solution import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = Rastrigin(10)

    max_evaluations = 250000

    algorithm = SimulatedAnnealing(
        problem=problem,
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20.0),
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    algorithm.run()
    result = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(result, 'FUN.'+ algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(result, 'VAR.' + algorithm.get_name() + "." + problem.get_name())

    print('Algorithm: ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Solution: ' + str(result.variables[0]))
    print('Fitness:  ' + str(result.objectives[0]))
    print('Computing time: ' + str(algorithm.total_computing_time))
Example #5
0
from jmetal.algorithm.multiobjective import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations

problem = ZDT1()

algorithm = NSGAII(
    problem=problem,
    population_size=100,
    offspring_population_size=100,
    mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
    crossover=SBXCrossover(probability=1.0, distribution_index=20),
    termination_criterion=StoppingByEvaluations(max_evaluations=25000)
)

algorithm.run()

from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \
    print_variables_to_file

front = get_non_dominated_solutions(algorithm.get_result())

print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
print_variables_to_file(front, 'VAR.NSGAII.ZDT1')

from jmetal.lab.visualization import Plot

plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png')
Example #6
0
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            crossover=SBXCrossover(probability=1.0, distribution_index=20),
            termination_criterion = StoppingByEvaluations(max_evaluations=max_evaluations)
            # termination_criterion = StoppingByQualityIndicator(quality_indicator=HyperVolume, expected_value=1,
            #                                                  degree=0.9)
            # selection = BinaryTournamentSelection()
        )
    elif Configuration.algorithm == 'Random':
        algorithm = RandomSearch(
            problem=problem,
            termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations)
        )


    """==========================调用算法模板进行种群进化========================="""
    progress_bar = ProgressBarObserver(max=max_evaluations)
    algorithm.observable.register(progress_bar)
    algorithm.run()
    front = algorithm.get_result()

    """==================================输出结果=============================="""
    # Save results to file
    print_function_values_to_file(front, os.path.join(target_dir, '/FUN.' + algorithm.label))
    print_variables_to_file(front, os.path.join(target_dir, '/VAR.' + algorithm.label))

    print(f'Algorithm: ${algorithm.get_name()}')
    print(f'Problem: ${problem.get_name()}')
    print(f'Computing time: ${algorithm.total_computing_time}')


                               population_size=pop_size,
                               offspring_population_size=int(pop_size * Cr),
                               mutation=MulticastMutation(probability=Pmut,
                                                          Pnmut=Pnmut,
                                                          G=gr),
                               crossover=MulticastCrossover(
                                   probability=Cr,
                                   root_node=root_node,
                                   destination_nodes=destination_nodes,
                                   graph=gr),
                               termination_criterion=StoppingByEvaluations(
                                   max_evaluations=max_evaluations))

        algorithm.run()
        front = algorithm.get_result()

        # Save results to file
        print_function_values_to_file(
            front,
            f"results/multiobjective/{params['algorithm']}/{params['pop_size']}_{params['nbr_generations']}_{params['network']}_{params['experiment']}_{i}"
        )
        plot_front = Plot(title='Pareto front approximation',
                          axis_labels=['cost', 'delay'])
        plot_front.plot(front,
                        label=f'{params["algorithm"]}',
                        filename=f'{params["algorithm"]}',
                        format='png')
        print(f'Algorithm: ${algorithm.get_name()}')
        print(f'Problem: ${problem.get_name()}')
        print(f'Computing time: ${algorithm.total_computing_time}')
Example #8
0
    Configuration = configure()
    # global BestPopulation
    BestPopulation = BestPop(Configuration)
    # config.createfolders()
    Goal_num = Configuration.goal_num

    # file_name = text_create(Configuration )
    # output = sys.stdout
    # outputfile = codecs.open(file_name,  'w', 'utf-8')
    # sys.stdout = outputfile
    """===============================实例化问题对象============================"""
    problem = OvertakeProblem(Goal_num, Configuration, BestPopulation)
    """=================================算法参数设置============================"""
    max_evaluations = Configuration.maxIterations
    algorithm = RandomSearch(problem=problem,
                             termination_criterion=StoppingByEvaluations(
                                 max_evaluations=max_evaluations))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, 'FUN.' + Configuration.file_dir_eval + algorithm.label)
    print_variables_to_file(
        front, 'VAR.' + Configuration.file_dir_var + algorithm.label)

    print(f'Algorithm: ${algorithm.get_name()}')
    print(f'Problem: ${problem.get_name()}')
    print(f'Computing time: ${algorithm.total_computing_time}')