Example #1
0
def rename_file(job_id, fn_id, newname):
    """Only renames file inside same path/server. Does not move cross directories.
    This job checks if there is a RawFile entry with the same name in the same folder
    to avoid possible renaming collisions. Updates RawFile in job instead of view 
    since jobs are processed in a single queue.
    Since it only expects raw files it will also rename all mzML attached converted
    files. newname should NOT contain the file extension, only name.
    FIXME: make impossible to overwrite using move jobs at all (also moving etc)
    """
    fn = models.StoredFile.objects.select_related('rawfile', 'servershare').get(
        pk=fn_id)
    # FIXME task checks if src == dst, but we could do that already here?
    fn_ext = os.path.splitext(fn.filename)[1]
    if models.StoredFile.objects.exclude(pk=fn_id).filter(
            rawfile__name=newname + fn_ext, path=fn.path,
            servershare_id=fn.servershare_id).count():
        raise RuntimeError('A file in path {} with name {} already exists or will soon be created. Please choose another name'.format(fn.path, newname))
    fn.rawfile.name = newname + fn_ext
    fn.rawfile.save()
    for changefn in fn.rawfile.storedfile_set.all():
        oldname, ext = os.path.splitext(changefn.filename)
        special_type = '_refined' if changefn.filetype_id == settings.REFINEDMZML_SFGROUP_ID else ''
        print(newname, special_type)
        tid = dstasks.move_file_storage.delay(changefn.filename, changefn.servershare.name,
                                              changefn.path, changefn.path, changefn.id, 
                                              newname='{}{}{}'.format(newname, special_type, ext)).id
        create_db_task(tid, job_id, changefn.filename, changefn.servershare.name,
                       changefn.path, changefn.path, changefn.id, newname=newname + ext)
Example #2
0
def move_files_dataset_storage(job_id, dset_id, dst_path, rawfn_ids, *sf_ids):
    print('Moving dataset files to storage')
    new_sf_ids = StoredFile.objects.filter(
        rawfile__datasetrawfile__dataset_id=dset_id,
        rawfile__source_md5=F('md5'),
        rawfile_id__in=rawfn_ids)
    if new_sf_ids.count() != len(sf_ids):
        print('Original job submission had {} stored files, but now there are {}'
              ' stored files'.format(len(sf_ids), new_sf_ids.count()))
    dset_files = StoredFile.objects.filter(pk__in=new_sf_ids, checked=True)
    # if only half of the files have been SCP arrived yet? Try more later:
    dset_registered_files = DatasetRawFile.objects.filter(
        dataset_id=dset_id, rawfile_id__in=rawfn_ids)
    if dset_files.count() != dset_registered_files.count():
        raise RuntimeError(
            'Not all files to move have been transferred or '
            'registered as transferred yet, or have non-matching MD5 sums '
            'between their registration and after transfer from input source. '
            'Holding this job, you may retry it when files have arrived')
    for fn in dset_files:
        # TODO check for diff os.path.join(sevrershare, dst_path), not just
        # path?
        if fn.path != dst_path:
            tid = tasks.move_file_storage.delay(
                    fn.rawfile.name, fn.servershare.name, fn.path,
                    dst_path, fn.id).id
            create_db_task(tid, job_id, fn.rawfile.name, fn.servershare.name, fn.path, dst_path, fn.id)
Example #3
0
def move_files_dataset_storage(job_id, dset_id, dst_path, rawfn_ids, *sf_ids):
    print('Moving dataset files to storage')
    new_sf_ids = StoredFile.objects.filter(
        rawfile__datasetrawfile__dataset_id=dset_id,
        rawfile__source_md5=F('md5'),
        rawfile_id__in=rawfn_ids)
    if new_sf_ids.count() != len(sf_ids):
        print(
            'Original job submission had {} stored files, but now there are {}'
            ' stored files'.format(len(sf_ids), new_sf_ids.count()))
    dset_files = StoredFile.objects.filter(pk__in=new_sf_ids, checked=True)
    # if only half of the files have been SCP arrived yet? Try more later:
    dset_registered_files = DatasetRawFile.objects.filter(
        dataset_id=dset_id, rawfile_id__in=rawfn_ids)
    if dset_files.count() != dset_registered_files.count():
        raise RuntimeError(
            'Not all files to move have been transferred or '
            'registered as transferred yet, or have non-matching MD5 sums '
            'between their registration and after transfer from input source. '
            'Holding this job and temporarily retrying it')
    for fn in dset_files:
        # TODO check for diff os.path.join(sevrershare, dst_path), not just
        # path?
        if fn.path != dst_path:
            tid = tasks.move_file_storage.delay(fn.rawfile.name,
                                                fn.servershare.name, fn.path,
                                                dst_path, fn.id).id
            create_db_task(tid, job_id, fn.rawfile.name, fn.servershare.name,
                           fn.path, dst_path, fn.id)
Example #4
0
def auto_run_qc_workflow(job_id, sf_id, analysis_id, wfv_id, dbfn_id):
    """Assumes one file, one analysis"""
    analysis = models.Analysis.objects.get(pk=analysis_id)
    nfwf = models.NextflowWfVersion.objects.get(pk=wfv_id)
    dbfn = models.LibraryFile.objects.get(pk=dbfn_id).sfile
    mzml = filemodels.StoredFile.objects.select_related(
        'rawfile__producer', 'servershare').get(rawfile__storedfile__id=sf_id,
                                                filetype='mzml')

    wf = models.Workflow.objects.filter(shortname__name='QC').last()
    params = ['--mods', 'data/labelfreemods.txt', '--instrument']
    params.append('velos' if 'elos' in mzml.rawfile.producer.name else 'qe')
    stagefiles = {
        '--mzml': (mzml.servershare.name, mzml.path, mzml.filename),
        '--db': (dbfn.servershare.name, dbfn.path, dbfn.filename)
    }
    run = {
        'timestamp': datetime.strftime(analysis.date, '%Y%m%d_%H.%M'),
        'analysis_id': analysis.id,
        'rf_id': mzml.rawfile_id,
        'wf_commit': nfwf.commit,
        'nxf_wf_fn': nfwf.filename,
        'repo': nfwf.nfworkflow.repo,
    }
    views.create_nf_search_entries(analysis, wf.id, nfwf.id, job_id)
    res = tasks.run_nextflow_longitude_qc.delay(run, params, stagefiles)
    create_db_task(res.id, job_id, run, params, stagefiles)
Example #5
0
def refine_mzmls(job_id, dset_id, analysis_id, wfv_id, dbfn_id, qtype, *dset_mzmls):
    analysis = models.Analysis.objects.get(pk=analysis_id)
    nfwf = models.NextflowWfVersion.objects.get(pk=wfv_id)
    dbfn = models.LibraryFile.objects.get(pk=dbfn_id).sfile
    stagefiles = {'--tdb': (dbfn.servershare.name, dbfn.path, dbfn.filename)}
    mzmlfiles = rm.StoredFile.objects.select_related('rawfile').filter(
        pk__in=dset_mzmls, rawfile__datasetrawfile__dataset_id=dset_id)
    analysisshare = rm.ServerShare.objects.get(name=settings.ANALYSISSHARENAME).id
    mzmls = [(x.servershare.name, x.path, x.filename, 
              get_or_create_mzmlentry(x, settings.REFINEDMZML_SFGROUP_ID, analysisshare).id, analysisshare)
             for x in mzmlfiles]
    allinstr = [x['rawfile__producer__name'] for x in mzmlfiles.distinct('rawfile__producer').values('rawfile__producer__name')] 
    if len(allinstr) > 1:
        raise RuntimeError('Trying to run a refiner job on dataset containing more than one instrument is not possible')
    params = ['--instrument']
    params.append('velos' if 'elos' in allinstr else 'qe')
    if qtype != 'labelfree':
        params.extend(['--isobaric', qtype])
    run = {'timestamp': datetime.strftime(analysis.date, '%Y%m%d_%H.%M'),
           'analysis_id': analysis.id,
           'wf_commit': nfwf.commit,
           'nxf_wf_fn': nfwf.filename,
           'repo': nfwf.nfworkflow.repo,
           'name': analysis.name,
           'outdir': analysis.user.username,
           }
    res = tasks.refine_mzmls.delay(run, params, mzmls, stagefiles)
    analysis.log = json.dumps(['[{}] Job queued'.format(datetime.strftime(timezone.now(), '%Y-%m-%d %H:%M:%S'))])
    analysis.save()
    create_db_task(res.id, job_id, run, params, mzmls, stagefiles)
Example #6
0
def move_single_file(job_id, fn_id, dst_path, newname=False):
    fn = models.StoredFile.objects.select_related('rawfile', 'servershare').get(
        pk=fn_id)
    tid = dstasks.move_file_storage.delay(fn.rawfile.name, fn.servershare.name,
                                          fn.path, dst_path, fn.id, newname).id
    create_db_task(tid, job_id, md5, fn.rawfile.name, fn.servershare.name,
                   fn.path, dst_path, fn.id, newname)
Example #7
0
def auto_run_qc_workflow(job_id, sf_id, analysis_id, wfv_id, dbfn_id):
    """Assumes one file, one analysis"""
    analysis = models.Analysis.objects.get(pk=analysis_id)
    nfwf = models.NextflowWfVersion.objects.get(pk=wfv_id)
    dbfn = models.LibraryFile.objects.get(pk=dbfn_id).sfile
    mzml = rm.StoredFile.objects.select_related(
        'rawfile__producer', 'servershare', 'filetype').get(rawfile__storedfile__id=sf_id,
                                                filetype__filetype='mzml')
    
    wf = models.Workflow.objects.filter(shortname__name='QC').last()
    params = ['--mods', 'data/labelfreemods.txt', '--instrument']
    params.append('velos' if 'elos' in mzml.rawfile.producer.name else 'qe')
    stagefiles = {'--mzml': (mzml.servershare.name, mzml.path, mzml.filename),
                  '--db': (dbfn.servershare.name, dbfn.path, dbfn.filename)}
    run = {'timestamp': datetime.strftime(analysis.date, '%Y%m%d_%H.%M'),
           'analysis_id': analysis.id,
           'rf_id': mzml.rawfile_id,
           'wf_commit': nfwf.commit,
           'nxf_wf_fn': nfwf.filename,
           'repo': nfwf.nfworkflow.repo,
           'name': 'longqc',
           'outdir': 'internal_results',
           }
    create_nf_search_entries(analysis, wf.id, nfwf.id, job_id)
    res = tasks.run_nextflow_longitude_qc.delay(run, params, stagefiles)
    analysis.log = json.dumps(['[{}] Job queued'.format(datetime.strftime(timezone.now(), '%Y-%m-%d %H:%M:%S'))])
    analysis.save()
    create_db_task(res.id, job_id, run, params, stagefiles)
Example #8
0
def move_single_file(job_id, fn_id, dst_path, oldname=False, dstshare=False, newname=False):
    fn = models.StoredFile.objects.select_related('rawfile', 'servershare').get(
        pk=fn_id)
    oldname = fn.filename if not oldname else oldname
    tid = dstasks.move_file_storage.delay(oldname, fn.servershare.name,
                                          fn.path, dst_path, fn.id, dstshare=dstshare,
                                          newname=newname).id
    create_db_task(tid, job_id, oldname, fn.servershare.name,
                   fn.path, dst_path, fn.id, dstshare=dstshare, newname=newname)
Example #9
0
def purge_analysis(job_id, analysis_id, *sf_ids):
    """Queues tasks for deleting files from analysis from disk, then queues 
    job for directory removal"""
    for fn in rm.StoredFile.objects.filter(pk__in=sf_ids):
        fullpath = os.path.join(fn.path, fn.filename)
        print('Purging {} from analysis {}'.format(fullpath, analysis_id))
        tid = filetasks.delete_file.delay(fn.servershare.name, fullpath,
                fn.id).id
        create_db_task(tid, job_id, fn.servershare.name, fullpath, fn.id)
Example #10
0
def get_md5(job_id, sf_id):
    print('Running MD5 job')
    sfile = models.StoredFile.objects.filter(pk=sf_id).select_related(
        'servershare', 'rawfile').get()
    fnpath = os.path.join(sfile.path, sfile.filename)
    res = tasks.get_md5.delay(sfile.rawfile.source_md5, sfile.id, fnpath,
                              sfile.servershare.name)
    create_db_task(res.id, job_id, sfile.rawfile.source_md5, sfile.id, fnpath,
                   sfile.servershare.name)
    print('MD5 task queued')
Example #11
0
def get_md5(job_id, sf_id):
    print('Running MD5 job')
    sfile = models.StoredFile.objects.filter(pk=sf_id).select_related(
        'servershare', 'rawfile').get()
    fnpath = os.path.join(sfile.path, sfile.filename)
    res = tasks.get_md5.delay(sfile.rawfile.source_md5, sfile.id, fnpath,
                              sfile.servershare.name)
    create_db_task(res.id, job_id, sfile.rawfile.source_md5, sfile.id, fnpath,
                   sfile.servershare.name)
    print('MD5 task queued')
Example #12
0
def delete_empty_directory(job_id, analysis_id, *dependent_sfids):
    """Check first if all the sfids are set to purged, indicating the dir is actually empty.
    Then queue a task. The sfids also make this job dependent on other jobs on those, as in
    the file-purging tasks before this directory deletion"""
    sfiles = models.StoredFile.objects.filter(pk__in=dependent_sfids)
    if sfiles.count() == sfiles.filter(purged=True).count():
        fn = sfiles.select_related('servershare').last()
        tid = tasks.delete_empty_dir.delay(fn.servershare.name, fn.path).id
        create_db_task(tid, job_id, fn.servershare.name, fn.path)
    else:
        raise RuntimeError('Cannot delete dir: according to the DB, there are still storedfiles which '
            'have not been purged yet in the directory')
Example #13
0
def remove_files_from_dataset_storagepath(job_id, dset_id, fn_ids, *sf_ids):
    print('Moving files with ids {} from dataset storage to tmp, '
          'if not already there. Deleting if mzml'.format(fn_ids))
    for fn in StoredFile.objects.select_related('filetype').filter(
            pk__in=sf_ids).exclude(servershare__name=settings.TMPSHARENAME):
        if fn.filetype.filetype == 'mzml':
            fullpath = os.path.join(fn.path, fn.filename)
            tid = filetasks.delete_file.delay(fn.servershare.name, fullpath,
                                              fn.id).id
            create_db_task(tid, job_id, fn.servershare.name, fullpath, fn.id)
        else:
            tid = tasks.move_stored_file_tmp.delay(fn.filename, fn.path,
                                                   fn.id).id
            create_db_task(tid, job_id, fn.filename, fn.path, fn.id)
Example #14
0
def remove_files_from_dataset_storagepath(job_id, dset_id, fn_ids, *sf_ids):
    print('Moving files with ids {} from dataset storage to tmp, '
          'if not already there. Deleting if mzml'.format(fn_ids))
    for fn in StoredFile.objects.filter(pk__in=sf_ids).exclude(
            servershare__name=settings.TMPSHARENAME):
        if fn.filetype == 'mzml':
            fullpath = os.path.join(fn.path, fn.filename)
            tid = filetasks.delete_file.delay(fn.servershare.name, fullpath,
                                              fn.id).id
            create_db_task(tid, job_id, fn.servershare.name, fullpath, fn.id)
        else:
            tid = tasks.move_stored_file_tmp.delay(fn.rawfile.name, fn.path,
                                                   fn.id).id
            create_db_task(tid, job_id, fn.rawfile.name, fn.path, fn.id)
Example #15
0
def create_pdc_archive(job_id, sf_id, md5):
    print('Running PDC archive job')
    sfile = models.StoredFile.objects.filter(pk=sf_id).select_related(
        'servershare').get()
    yearmonth = datetime.strftime(sfile.regdate, '%Y%m')
    # only create entry when not already exists, no sideeffects
    try:
        models.PDCBackedupFile.objects.get(storedfile=sfile)
    except models.PDCBackedupFile.DoesNotExist:
        models.PDCBackedupFile.objects.create(storedfile=sfile, 
                pdcpath='', success=False)
    fnpath = os.path.join(sfile.path, sfile.filename)
    res = tasks.pdc_archive.delay(md5, yearmonth, sfile.servershare.name, fnpath, sfile.id)
    create_db_task(res.id, job_id, md5, yearmonth, sfile.servershare.name, fnpath, sfile.id)
    print('PDC archival task queued')
Example #16
0
def create_swestore_backup(job_id, sf_id, md5):
    print('Running swestore backup job')
    sfile = models.StoredFile.objects.filter(pk=sf_id).select_related(
        'servershare').get()
    # only create entry when not already exists, no sideeffects
    try:
        models.SwestoreBackedupFile.objects.get(storedfile=sfile)
    except models.SwestoreBackedupFile.DoesNotExist:
        models.SwestoreBackedupFile.objects.create(storedfile=sfile,
                                                   swestore_path='',
                                                   success=False)
    fnpath = os.path.join(sfile.path, sfile.filename)
    res = tasks.swestore_upload.delay(md5, sfile.servershare.name, fnpath,
                                      sfile.id)
    create_db_task(res.id, job_id, md5, sfile.servershare.name, fnpath, sfile.id)
    print('Swestore task queued')
Example #17
0
def create_swestore_backup(job_id, sf_id, md5):
    print('Running swestore backup job')
    sfile = models.StoredFile.objects.filter(pk=sf_id).select_related(
        'servershare').get()
    # only create entry when not already exists, no sideeffects
    try:
        models.SwestoreBackedupFile.objects.get(storedfile=sfile)
    except models.SwestoreBackedupFile.DoesNotExist:
        models.SwestoreBackedupFile.objects.create(storedfile=sfile,
                                                   swestore_path='',
                                                   success=False)
    fnpath = os.path.join(sfile.path, sfile.filename)
    res = tasks.swestore_upload.delay(md5, sfile.servershare.name, fnpath,
                                      sfile.id)
    create_db_task(res.id, job_id, md5, sfile.servershare.name, fnpath, sfile.id)
    print('Swestore task queued')
Example #18
0
def download_px_project(job_id, dset_id, pxacc, rawfnids, sharename, *sf_ids):
    """gets sf_ids, of non-checked non-downloaded PX files.
    checks pride, fires tasks for files not yet downloaded. 
    """
    px_stored = {x.filename: x for x in models.StoredFile.objects.filter(
                     pk__in=sf_ids, checked=False).select_related('rawfile')}
    t_ids = []
    for fn in call_proteomexchange(pxacc):
        ftpurl = urlsplit(fn['downloadLink'])
        filename = os.path.split(ftpurl.path)[1]
        if filename in px_stored and fn['fileSize'] == px_stored[filename].rawfile.size:
            pxsf = px_stored[filename]
            t_ids.append(tasks.download_px_file_raw.delay(
                ftpurl.path, ftpurl.netloc, pxsf.id, pxsf.rawfile_id, fn['fileSize'],
                sharename, dset_id).id)
        create_db_task(t_ids[-1], job_id, ftpurl.path, ftpurl.netloc, pxsf.id,
                       pxsf.rawfile_id, fn['fileSize'], sharename, dset_id)
Example #19
0
def download_px_project(job_id, dset_id, pxacc, rawfnids, sharename, *sf_ids):
    """gets sf_ids, of non-checked non-downloaded PX files.
    checks pride, fires tasks for files not yet downloaded. 
    """
    px_stored = {x.filename: x for x in models.StoredFile.objects.filter(
                     pk__in=sf_ids, checked=False).select_related('rawfile')}
    t_ids = []
    for fn in call_proteomexchange(pxacc):
        ftpurl = urlsplit(fn['downloadLink'])
        filename = os.path.split(ftpurl.path)[1]
        if filename in px_stored and fn['fileSize'] == px_stored[filename].rawfile.size:
            pxsf = px_stored[filename]
            t_ids.append(tasks.download_px_file_raw.delay(
                ftpurl.path, ftpurl.netloc, pxsf.id, pxsf.rawfile_id, fn['fileSize'],
                sharename, dset_id).id)
        create_db_task(t_ids[-1], job_id, ftpurl.path, ftpurl.netloc, pxsf.id,
                       pxsf.rawfile_id, fn['fileSize'], sharename, dset_id)
Example #20
0
def run_nextflow(job_id, dset_ids, platenames, fractions, setnames, analysis_id, wf_id, wfv_id, inputs, *dset_mzmls):
    """
    inputs is {'params': ['--isobaric', 'tmt10plex'],
               'singlefiles': {'--tdb': tdb_sf_id, ... },}
    or shoudl inputs be DB things fields flag,sf_id (how for mzmls though?)
{'params': ['--isobaric', 'tmt10plex', '--instrument', 'qe', '--nfcore', '--hirief', 'SAMPLETABLE', "126::set1::treat1::treat::::127::set1::treat2::treat..."
], 'mzml': ('--mzmls', '{sdir}/*.mzML'), 'singlefiles': {'--tdb': 42659, '--dbsnp': 42665, '--genome': 42666, '--snpfa': 42662, '--cosmic': 42663, '--ddb': 42664, '--blastdb': 42661, '--knownproteins': 42408, '--gtf': 42658, '--mods': 42667}}
    """
    analysis = models.Analysis.objects.select_related('user').get(pk=analysis_id)
    nfwf = models.NextflowWfVersion.objects.select_related('nfworkflow').get(
        pk=wfv_id)
    stagefiles = {}
    for flag, sf_id in inputs['singlefiles'].items():
        sf = rm.StoredFile.objects.get(pk=sf_id)
        stagefiles[flag] = (sf.servershare.name, sf.path, sf.filename)
    mzmls = [(x.servershare.name, x.path, x.filename, setnames[str(x.id)],
              platenames[str(x.rawfile.datasetrawfile.dataset_id)], fractions.get(str(x.id), False)) for x in
             rm.StoredFile.objects.filter(pk__in=dset_mzmls)]
    run = {'timestamp': datetime.strftime(analysis.date, '%Y%m%d_%H.%M'),
           'analysis_id': analysis.id,
           'wf_commit': nfwf.commit,
           'nxf_wf_fn': nfwf.filename,
           'repo': nfwf.nfworkflow.repo,
           'name': analysis.name,
           'outdir': analysis.user.username,
           }
    profiles = ['standard']
    if '--nfcore' in inputs['params']:
        inputs['params'] = [x for x in inputs['params'] if x != '--nfcore']
        profiles.extend(['docker', 'lehtio'])
        inputs['params'].extend(['--name', 'RUNNAME__PLACEHOLDER'])
    else:
        inputs['params'].extend(['--searchname', 'RUNNAME__PLACEHOLDER'])
    if 'sampletable' in inputs:
        inputs['params'].extend(['SAMPLETABLE', inputs['sampletable']])
    res = tasks.run_nextflow_workflow.delay(run, inputs['params'], mzmls, stagefiles, ','.join(profiles))
    analysis.log = json.dumps(['[{}] Job queued'.format(datetime.strftime(timezone.now(), '%Y-%m-%d %H:%M:%S'))])
    analysis.save()
    create_db_task(res.id, job_id, run, inputs['params'], mzmls, stagefiles)
Example #21
0
def run_nextflow(job_id, dset_ids, platenames, fractions, setnames,
                 analysis_id, wf_id, wfv_id, inputs, *dset_mzmls):
    """
    inputs is {'params': ['--isobaric', 'tmt10plex'],
               'singlefiles': {'--tdb': tdb_sf_id, ... },}
    or shoudl inputs be DB things fields flag,sf_id (how for mzmls though?)
{'params': ['--isobaric', 'tmt10plex', '--instrument', 'qe', '-profile', 'slurm'], 'mzml': ('--mzmls', '{sdir}/*.mzML'), 'singlefiles': {'--tdb': 42659, '--dbsnp': 42665, '--genome': 42666, '--snpfa': 42662, '--cosmic': 42663, '--ddb': 42664, '--blastdb': 42661, '--knownproteins': 42408, '--gtf': 42658, '--mods': 42667}}
    """
    analysis = models.Analysis.objects.select_related('user').get(
        pk=analysis_id)
    nfwf = models.NextflowWfVersion.objects.select_related('nfworkflow').get(
        pk=wfv_id)
    stagefiles = {}
    for flag, sf_id in inputs['singlefiles'].items():
        sf = filemodels.StoredFile.objects.get(pk=sf_id)
        stagefiles[flag] = (sf.servershare.name, sf.path, sf.filename)
    mzmls = [(x.servershare.name, x.path, x.filename, setnames[str(x.id)],
              platenames[str(x.rawfile.datasetrawfile.dataset_id)],
              fractions.get(str(x.id), False))
             for x in filemodels.StoredFile.objects.filter(pk__in=dset_mzmls)]
    run = {
        'timestamp': datetime.strftime(analysis.date, '%Y%m%d_%H.%M'),
        'analysis_id': analysis.id,
        'wf_commit': nfwf.commit,
        'nxf_wf_fn': nfwf.filename,
        'repo': nfwf.nfworkflow.repo,
        'name': analysis.name,
        'outdir': analysis.user.username,
    }
    res = tasks.run_nextflow_workflow.delay(run, inputs['params'], mzmls,
                                            stagefiles)
    analysis.log = json.dumps([
        '[{}] Job queued'.format(
            datetime.strftime(datetime.now(), '%Y-%m-%d %H:%M:%S'))
    ])

    analysis.save()
    create_db_task(res.id, job_id, run, inputs['params'], mzmls, stagefiles)
Example #22
0
def move_dataset_storage_loc(job_id, dset_id, src_path, dst_path, *sf_ids):
    # within a server share
    print('Renaming dataset storage location job')
    t = tasks.rename_storage_location.delay(src_path, dst_path, sf_ids)
    create_db_task(t.id, job_id, src_path, dst_path, sf_ids)
Example #23
0
def move_dataset_storage_loc(job_id, dset_id, src_path, dst_path, *sf_ids):
    # within a server share
    print('Renaming dataset storage location job')
    t = tasks.rename_storage_location.delay(src_path, dst_path, sf_ids)
    create_db_task(t.id, job_id, src_path, dst_path, sf_ids)