Example #1
0
    def init_finance_table(self, start_date=0):
        self.authenticate()
        self.stock = jdk.normalize_code(self.stock)
        self.stock_info = jdk.get_security_info(self.stock)

        if self.stock_info is None:
            print('Error: Cannot get data or stock code not correct!')
        '''Internal usage. To get finance table'''
        
        q = jdk.query(jdk.valuation).filter(jdk.valuation.code == self.stock)
        end_date = datetime.now().date()
        
        if start_date == 0:
            df = jdk.get_fundamentals_continuously(q, end_date=end_date, count=5000)
        else:
            # get the days between start date and end date
            date_span = jdk.get_trade_days(start_date=start_date, end_date=end_date)
            if len(date_span) == 0:
                return
            df = jdk.get_fundamentals_continuously(q, end_date=end_date, count=len(date_span))

        if df is None:
            return

        self.finance_data = df.swapaxes('items', 'minor_axis')
        self.finance_data = self.finance_data[self.stock]
        del self.finance_data['day.1']
        del self.finance_data['code.1']
        del self.finance_data['id']
        return
Example #2
0
def get_single_price(code: str, freq: str, start=None, end=None) -> pd.DataFrame:
    if start is None:
        start = jq.get_security_info(code).start_date
    if end is None:
        end = datetime.today()
    df = jq.get_price(code, start_date=start, end_date=end, frequency=freq, panel=False)
    print(df)
    return df
def delect_stop(stocks,begin_date,n=30*3):
    stock_list = list()
    begin_date = datetime.datetime.strptime(begin_date,"%Y-%m-%d")
    for stock in stocks:
        start_date = jq.get_security_info(stock).start_date
        if start_date < (begin_date - datetime.timedelta(days=n)).date():
            stock_list.append(stock)

    return stock_list
Example #4
0
    def init_light(self):
        self.authenticate()
        self.stock = jdk.normalize_code(self.stock)
        self.stock_info = jdk.get_security_info(self.stock)
        
        if self.stock_info is None:
            print('Error: Cannot get data or stock code not correct!')

        self.finance_table = self.__generate_table_name() + '_finance'
        self.price_table = self.__generate_table_name() + '_price'
Example #5
0
 def getDateData(self, jqID, intDate):
     dataTable = self.cfg.dictDataTable[jq.get_security_info(jqID).type]
     sqlword = "SELECT * FROM %s where id='%s' and CONVERT(varchar(10), tm, 112)='%d'" % (
         dataTable, jqID, intDate)
     data = pd.read_sql(sqlword, con=self.conn)
     if len(data) > 0:
         return data
     data = getJQTickData(jqID, intDate)
     updateTickData(data, dataTable)
     return data
Example #6
0
    def get_price(self, code, start_date='2005-01-01', end_date='2018-11-30'):
        '''Download stock data (adjusted close)
        
        Parameters
        ----------------------
        code: str or int
            code of stock
        start_date: str
            start_date
        end_date: str
            end_date
            
        Returns
        ----------------------
        normalized_code, pd.DataFrame
        '''

        try:
            normalized_code = self.normalize_code(str(code))
        except Exception as e:
            print(e)
            return [], None

        if normalized_code == "000001.XSHE":
            price_df = pd.read_csv("finance/data/000001.SXHE.csv", index_col=0)
            price_df = price_df.loc[start_date:end_date,
                                    ['open', 'close', 'high', 'low', 'volume']]
        else:
            security_info = get_security_info(normalized_code)
            if security_info is None:
                return [], None
            security_start_date = security_info.start_date
            security_end_date = security_info.end_date

            # compare date information of security and requery date
            if datetime.datetime.strptime(
                    start_date, "%Y-%m-%d").date() < security_start_date:
                start_date = security_start_date
            if datetime.datetime.strptime(
                    end_date, "%Y-%m-%d").date() > security_end_date:
                end_date = security_end_date

            price_df = get_price(
                normalized_code,
                start_date=start_date,
                end_date=end_date,
                frequency='daily',
                fields=['open', 'close', 'high', 'low', 'volume'],
                skip_paused=False,
                fq='pre')
        self.fill_missing_values(price_df)

        return normalized_code, price_df
Example #7
0
 def get_index_data(self, index_code, trade_days):
     open_date = jqdatasdk.get_security_info(index_code).start_date
     if (open_date > trade_days[0]):
         trade_days = jqdatasdk.get_trade_days(start_date=open_date)
     df = pd.DataFrame()
     for day in trade_days:
         dic = self._calc_pe_pb(index_code, day)
         if dic:
             df = df.append(dic, ignore_index=True)
     if not df.empty:
         df.set_index('day', inplace=True)
     return df
Example #8
0
def remove_new(stocks, tradeDate=None, day=1):
    """
    list: 去掉新股股票之后的股票列表
    """
    tradeDate = tradeDate if tradeDate is not None else datetime.datetime.now()
    nday = helper.get_ndays_before(str(tradeDate.date()), day)
    rm_news = []
    for s in stocks:
        info = jq.get_security_info(s)
        # 上市日期小于指定日期
        if str(info.start_date) < nday:
            rm_news.append(s)

    return rm_news
Example #9
0
def draw_line(stock_name, type, days=600):
    info = jqdatasdk.get_security_info(stock_name)

    if info is None:
      return 'error'
    q = jqdatasdk.query(jqdatasdk.valuation).filter(jqdatasdk.valuation.code == stock_name) 
    now = datetime.now()
    date = '%d-%d-%d' % (now.year, now.month, now.day)
    df = jqdatasdk.get_fundamentals_continuously(q, end_date=date, count=days)

    print(df['pe_ratio'].index)

    if type == 'PE':
      return draw_diagram(df['pe_ratio'], 'PE-TTM', stock_name, info.display_name)
    elif type == 'PB':
      return draw_diagram(df['pb_ratio'], 'PB', stock_name, info.display_name)
Example #10
0
def get_all_financial_data():
    df_set = []
    jdk.auth('18951518869', 'ceshi123')

    for stock in stock_set:
        stock_info = jdk.get_security_info(stock)             
        stock = stock.split('.')[0]

        df = read_finance_data(stock, 'pe_ratio', '2016-1-1', '2018-10-4')
        if df is None:
            print(stock)
            continue
        df_set.append(df)
        try:
            waveline.draw_diagram(df, 'PE-TTM', stock, stock_info.display_name)
        except:
            continue
Example #11
0
    def init(self):
        '''
        Get price, open, close, high, low, volume. And finantial data, TTM, PB, etc. 
        '''
        self.authenticate()
        self.stock = jdk.normalize_code(self.stock)
        self.stock_info = jdk.get_security_info(self.stock)

        if self.stock_info is None:
            print('Error: Cannot get data or stock code not correct!')

        self.finance_table = self.__generate_table_name() + '_finance'
        self.price_table = self.__generate_table_name() + '_price'

        price_data = jdk.get_price(self.stock, start_date=self.stock_info.start_date, end_date=datetime.now())
        # remove NaN data
        self.price_data = price_data.dropna()
        self.price_data.index.name = 'date'

        print('%s[%s] from %s - %s ' % (self.stock_info.display_name, self.stock, 
               self.stock_info.start_date, self.stock_info.end_date))
Example #12
0
def plot_index(index_code, df_, anno_text='', show=True):
    data = df_
    PEs = data['pe']
    low = round(PEs.quantile(0.3), 2)
    high = round(PEs.quantile(0.7), 2)
    plt.title(
        '%s-%s' %
        (index_code, jqdatasdk.get_security_info(index_code).display_name))
    #l1, = plt.plot(data.index, data.pe, lw=LINE_W)
    l1, = plt.plot(data.index, data.pe)
    #latest day annotation
    mid_idx = int(data.shape[0] / 2)
    txt = 'Data: %s, PE: %.2f, %s' % (str(
        data.index[-1])[:10], PEs.iloc[-1], str(anno_text))
    plt.text(data.index[mid_idx],
             PEs.max() - 1,
             txt,
             horizontalalignment='center')
    plt.axhline(high, ls='--', c='r', label=high)
    plt.axhline(low, ls='--', c='g', label=low)
    plt.legend()
    plt.show()
Example #13
0
 def getedate(self, c):
     return jq.get_security_info(c).end_date
def fill_stock_name(l):
    for stock in l:
        si = jq.get_security_info(stock.code)
        stock.name = si.display_name
def get_code_name(code):
    si = jq.get_security_info(code)
    return si.display_name
Example #16
0
    def convert_stk_code_to_ism_id(stk):

        return jq.get_security_info(stk).name
Example #17
0
def run_chan_analysis(stock_code, end_date, stock_days, x_jizhun,
                      stock_frequency, chanK_flag):
    jqdatasdk.auth('13381719059', 'GoodLuck2018')
    quotes = jqdatasdk.get_price(stock_code, datetime.datetime.strptime(end_date, "%Y-%m-%d %H:%M:%S")-datetime.timedelta(days=stock_days) , end_date,\
                       frequency=stock_frequency,skip_paused=False,fq='pre')
    # print quotes
    # 缠论k线
    quotes = parse2ChanK(quotes, quotes.values) if chanK_flag else quotes
    # print quotes
    quotes[quotes['volume'] == 0] = np.nan
    quotes = quotes.dropna()
    Close = quotes['close']
    Open = quotes['open']
    High = quotes['high']
    Low = quotes['low']
    T0 = quotes.index.values

    length = len(Close)

    # ht = HoverTool(tooltips=[
    #             ("date", "@date"),
    #             ("open", "@open"),
    #             ("close", "@close"),
    #             ("high", "@high"),
    #             ("low", "@low"),
    #             ("volume", "@volume"),
    #             ("money", "@money"),])
    # TOOLS = [ht, WheelZoomTool(dimensions=['width']),\
    #          ResizeTool(), ResetTool(),\
    #          PanTool(dimensions=['width']), PreviewSaveTool()]

    fig = plt.figure(figsize=(20, 10))
    ax1 = plt.subplot2grid((10, 4), (0, 0), rowspan=10, colspan=4)
    #fig = plt.figure()
    #ax1 = plt.axes([0,0,3,2])

    X = np.array(range(0, length))
    pad_nan = X + np.nan

    #计算上 下影线
    max_clop = Close.copy()
    max_clop[Close < Open] = Open[Close < Open]
    min_clop = Close.copy()
    min_clop[Close > Open] = Open[Close > Open]

    #上影线
    line_up = np.array([High, max_clop, pad_nan])
    line_up = np.ravel(line_up, 'F')
    #下影线
    line_down = np.array([Low, min_clop, pad_nan])
    line_down = np.ravel(line_down, 'F')

    #计算上下影线对应的X坐标
    pad_nan = np.nan + X
    pad_X = np.array([X, X, X])
    pad_X = np.ravel(pad_X, 'F')

    #画出实体部分,先画收盘价在上的部分
    up_cl = Close.copy()
    up_cl[Close <= Open] = np.nan
    up_op = Open.copy()
    up_op[Close <= Open] = np.nan

    down_cl = Close.copy()
    down_cl[Open <= Close] = np.nan
    down_op = Open.copy()
    down_op[Open <= Close] = np.nan

    even = Close.copy()
    even[Close != Open] = np.nan

    #画出收红的实体部分
    pad_box_up = np.array([up_op, up_op, up_cl, up_cl, pad_nan])
    pad_box_up = np.ravel(pad_box_up, 'F')
    pad_box_down = np.array([down_cl, down_cl, down_op, down_op, pad_nan])
    pad_box_down = np.ravel(pad_box_down, 'F')
    pad_box_even = np.array([even, even, even, even, pad_nan])
    pad_box_even = np.ravel(pad_box_even, 'F')

    #X的nan可以不用与y一一对应
    X_left = X - 0.25
    X_right = X + 0.25
    box_X = np.array([X_left, X_right, X_right, X_left, pad_nan])
    # print box_X
    box_X = np.ravel(box_X, 'F')
    # print box_X
    #Close_handle=plt.plot(pad_X,line_up,color='k')

    vertices_up = np.array([box_X, pad_box_up]).T
    vertices_down = np.array([box_X, pad_box_down]).T
    vertices_even = np.array([box_X, pad_box_even]).T

    handle_box_up = matplt.patches.Polygon(vertices_up, color='r', zorder=1)
    handle_box_down = matplt.patches.Polygon(vertices_down,
                                             color='g',
                                             zorder=1)
    handle_box_even = matplt.patches.Polygon(vertices_even,
                                             color='k',
                                             zorder=1)

    ax1.add_patch(handle_box_up)
    ax1.add_patch(handle_box_down)
    ax1.add_patch(handle_box_even)

    handle_line_up = matplt.lines.Line2D(pad_X,
                                         line_up,
                                         color='k',
                                         linestyle='solid',
                                         zorder=0)
    handle_line_down = matplt.lines.Line2D(pad_X,
                                           line_down,
                                           color='k',
                                           linestyle='solid',
                                           zorder=0)

    ax1.add_line(handle_line_up)
    ax1.add_line(handle_line_down)

    v = [0, length, Open.min() - 0.5, Open.max() + 0.5]
    plt.axis(v)

    T1 = T0[-len(T0):].astype(datetime.date) / 1000000000
    # print T1
    Ti = []
    for i in range(int(len(T0) / x_jizhun)):
        a = i * x_jizhun
        d = datetime.date.fromtimestamp(T1[a])
        #     print d
        T2 = d.strftime('$%Y-%m-%d$')
        Ti.append(T2)
        #print tab
    d1 = datetime.date.fromtimestamp(T1[len(T0) - 1])
    d2 = (d1 + datetime.timedelta(days=1)).strftime('$%Y-%m-%d$')
    Ti.append(d2)

    ax1.set_xticks(np.linspace(-2, len(Close) + 2, len(Ti)))

    ll = Low.min() * 0.97
    hh = High.max() * 1.03
    ax1.set_ylim(ll, hh)

    ax1.set_xticklabels(Ti)

    plt.grid(True)
    plt.setp(plt.gca().get_xticklabels(),
             rotation=45,
             horizontalalignment='right')
    '''
    以上代码拷贝自https://www.joinquant.com/post/1756
    感谢alpha-smart-dog

    K线图绘制完毕
    '''
    x_date_list = quotes.index.values.tolist()
    # for x_date in x_date_list:
    #     d = datetime.datetime.fromtimestamp(x_date/1000000000)
    #     print d.strftime("%Y-%m-%d %H:%M:%S.%f")
    # print x_date_list
    k_data = quotes
    k_values = k_data.values
    # 缠论k线
    chanK = quotes if chanK_flag else parse2ChanK(k_data, k_values)
    fenTypes, fenIdx = parse2ChanFen(chanK)
    #print "分型", fenTypes, fenIdx
    biIdx, frsBiType = parse2ChanBi(fenTypes, fenIdx, chanK)
    #biIdx = con2Cxianduan(stock_code, k_data, chanK, frsBiType, biIdx, end_date, cur_ji)
    #print chanK
    print("分笔", biIdx, frsBiType)
    print('number#', jqdatasdk.get_security_info(stock_code).display_name)
    #  3.得到分笔结果,计算坐标显示
    x_fenbi_seq = []
    y_fenbi_seq = []
    for i in range(len(biIdx)):
        if biIdx[i]:
            fenType = -frsBiType if i % 2 == 0 else frsBiType
            #         dt = chanK['enddate'][biIdx[i]]
            # 缠论k线
            _dt = chanK.index[biIdx[i]] if chanK_flag else chanK['enddate'][
                biIdx[i]]
            #         print k_data['high'][dt], k_data['low'][dt]
            time_long = np.long(
                time.mktime((_dt + datetime.timedelta(hours=8)).timetuple()) *
                1000000000)
            #         print x_date_list.index(time_long) if time_long in x_date_list else 0
            if fenType == 1:
                plt.text(x_date_list.index(time_long), k_data['high'][_dt], \
                         str(k_data['high'][_dt]), ha='left', fontsize=12)
                x_fenbi_seq.append(x_date_list.index(time_long))
                y_fenbi_seq.append(k_data['high'][_dt])
            if fenType == -1:
                plt.text(x_date_list.index(time_long), k_data['low'][_dt], \
                         str(k_data['low'][_dt]), va='bottom', fontsize=12)
                x_fenbi_seq.append(x_date_list.index(time_long))
                y_fenbi_seq.append(k_data['low'][_dt])
    #             bottom_time = None
    #             for k_line_dto in m_line_dto.member_list[::-1]:
    #                 if k_line_dto.low == m_line_dto.low:
    #                     # get_price返回的日期,默认时间是08:00:00
    #                     bottom_time = k_line_dto.begin_time.strftime('%Y-%m-%d') +' 08:00:00'
    #                     break
    #             x_fenbi_seq.append(x_date_list.index(long(time.mktime(datetime.strptime(bottom_time, "%Y-%m-%d %H:%M:%S").timetuple())*1000000000)))
    #             y_fenbi_seq.append(m_line_dto.low)

    #  在原图基础上添加分笔蓝线
    plt.plot(x_fenbi_seq, y_fenbi_seq)

    #线段画到笔上
    xdIdxs, xfenTypes = parse2ChanXD(frsBiType, biIdx, chanK)
    print('线段:', xdIdxs, xfenTypes)
    x_xd_seq = []
    y_xd_seq = []
    for i in range(len(xdIdxs)):
        if xdIdxs[i]:
            fenType = xfenTypes[i]
            #         dt = chanK['enddate'][biIdx[i]]
            # 缠论k线
            _dt = chanK.index[xdIdxs[i]] if chanK_flag else chanK['enddate'][
                xdIdxs[i]]
            #         print k_data['high'][dt], k_data['low'][dt]
            time_long = np.long(
                time.mktime((_dt + datetime.timedelta(hours=8)).timetuple()) *
                1000000000)
            #         print x_date_list.index(time_long) if time_long in x_date_list else 0
            if fenType == 1:
                x_xd_seq.append(x_date_list.index(time_long))
                y_xd_seq.append(k_data['high'][_dt])
            if fenType == -1:
                x_xd_seq.append(x_date_list.index(time_long))
                y_xd_seq.append(k_data['low'][_dt])
    #             bottom_time = None
    #             for k_line_dto in m_line_dto.member_list[::-1]:
    #                 if k_line_dto.low == m_line_dto.low:
    #                     # get_price返回的日期,默认时间是08:00:00
    #                     bottom_time = k_line_dto.begin_time.strftime('%Y-%m-%d') +' 08:00:00'
    #                     break
    #             x_fenbi_seq.append(x_date_list.index(long(time.mktime(datetime.strptime(bottom_time, "%Y-%m-%d %H:%M:%S").timetuple())*1000000000)))
    #             y_fenbi_seq.append(m_line_dto.low)

    #  在原图基础上添加分笔蓝线
    plt.plot(x_xd_seq, y_xd_seq)
    high_point = k_data['high'].max()
    low_point = k_data['low'].min()
    end_x = max(x_date_list)
    text_x = max(x_fenbi_seq)

    high_x = [0, 0]
    high_y = [0, 0]
    high_x[1] = end_x
    high_y[0] = high_point
    high_y[1] = high_y[0]
    plt.plot(high_x, high_y)
    plt.text(text_x,
             high_point,
             '100% : ' + str(high_point),
             ha='left',
             fontsize=16)

    low_x = [0, 0]
    low_y = [0, 0]
    low_x[1] = end_x
    low_y[0] = low_point
    low_y[1] = low_y[0]
    plt.plot(low_x, low_y)
    plt.text(text_x,
             low_point,
             '0% : ' + str(low_point),
             ha='left',
             fontsize=16)

    increase = high_point - low_point
    mid_x = [0, 0]
    mid_y = [0, 0]
    mid_x[1] = end_x
    mid_y[0] = low_point + increase / 2
    mid_y[1] = mid_y[0]
    plt.plot(mid_x, mid_y)
    plt.text(text_x,
             mid_y[0],
             '50% : ' + str(mid_y[0]),
             ha='left',
             fontsize=16)

    mid_x_1 = [0, 0]
    mid_y_1 = [0, 0]
    mid_x_1[1] = end_x
    mid_y_1[0] = low_point + increase * 0.618
    mid_y_1[1] = mid_y_1[0]
    plt.plot(mid_x_1, mid_y_1)
    plt.text(text_x,
             mid_y_1[0],
             '61.8% : ' + str(mid_y_1[0]),
             ha='left',
             fontsize=16)

    mid_x_2 = [0, 0]
    mid_y_2 = [0, 0]
    mid_x_2[1] = end_x
    mid_y_2[0] = low_point + increase * 0.382
    mid_y_2[1] = mid_y_2[0]
    plt.plot(mid_x_2, mid_y_2)
    plt.text(text_x,
             mid_y_2[0],
             '61.8% : ' + str(mid_y_2[0]),
             ha='left',
             fontsize=16)

    plt.show()
Example #18
0
 def getstockname(self, code):
     return jq.get_security_info(code).display_name