def gs_BIKE_Ridge(A_list,
                  yV,
                  alphas_log=(1, -1, 9),
                  X_concat=None,
                  n_folds=5,
                  n_jobs=-1):
    """
	As is a list of A matrices where A is similarity matrix. 
	X is a concatened linear descriptors. 
	If no X is used, X can be empty
	"""

    clf = binary_model.BIKE_Ridge(A_list, X_concat)
    parmas = {'alpha': np.logspace(*alphas_log)}
    ln = A_list[0].shape[0]  # ls is the number of molecules.

    kf_n = cross_validation.KFold(ln, n_folds=n_folds, shuffle=True)
    gs = grid_search.GridSearchCV(clf,
                                  parmas,
                                  scoring='r2',
                                  cv=kf_n,
                                  n_jobs=n_jobs)

    AX_idx = np.array([list(range(ln))]).T
    gs.fit(AX_idx, yV)

    return gs
Example #2
0
def cv_BIKE_Ridge( A_list, yV, alpha = 0.5, XX = None, n_splits = 5, n_jobs = -1, grid_std = None):

    clf = binary_model.BIKE_Ridge( A_list, XX, alpha = alpha)
    ln = A_list[0].shape[0] # ls is the number of molecules.
    kf_n_c = model_selection.KFold( n_splits = n_splits, shuffle=True)
    kf_n = kf5_ext_c.split( A_list[0])

    AX_idx = np.array([list(range( ln))]).T
    yV_pred = model_selection.cross_val_predict( clf, AX_idx, yV, cv = kf_n, n_jobs = n_jobs)

    print('The prediction output using cross-validation is given by:')
    jutil.cv_show( yV, yV_pred, grid_std = grid_std)

    return yV_pred	
Example #3
0
def gs_Ridge_BIKE( A_list, yV, XX = None, alphas_log = (1, -1, 9), n_splits = 5, n_jobs = -1):
    """
    As is a list of A matrices where A is similarity matrix. 
    X is a concatened linear descriptors. 
    If no X is used, X can be empty
    """

    clf = binary_model.BIKE_Ridge( A_list, XX)
    parmas = {'alpha': np.logspace( *alphas_log)}
    ln = A_list[0].shape[0] # ls is the number of molecules.

    kf_n_c = model_selection.KFold( n_splits = n_splits, shuffle=True)
    #kf_n = kf5_ext_c.split( A_list[0])
    gs = model_selection.GridSearchCV( clf, parmas, scoring = 'r2', cv = kf_n_c, n_jobs = n_jobs)
    
    AX_idx = np.array([list(range( ln))]).T
    gs.fit( AX_idx, yV)

    return gs