Example #1
0
def test_pathloss_corrpars(rtdata):
    """Test PathLossStep using correction_pars"""
    with dm.open(rtdata.get_data('nirspec/ifu/nrs1_flat_field.fits')) as data:
        pls = PathLossStep()
        corrected = pls.run(data)

        pls.use_correction_pars = True
        corrected_corrpars = pls.run(data)

    assert np.allclose(corrected.data, corrected_corrpars.data, equal_nan=True)
Example #2
0
def test_pathloss_source_type(rtdata):
    """Test PathLossStep forcing source type"""
    with dm.open(rtdata.get_data('nirspec/ifu/nrs1_flat_field.fits')) as data:
        pls = PathLossStep()
        pls.source_type = 'extended'
        pls.run(data)

    assert np.allclose(pls.correction_pars.data,
                       pls.correction_pars.pathloss_uniform,
                       equal_nan=True)
Example #3
0
def test_pathloss_inverse(rtdata):
    """Test PathLossStep using correction_pars"""
    data = dm.open(rtdata.get_data('nirspec/ifu/nrs1_flat_field.fits'))

    pls = PathLossStep()
    corrected = pls.run(data)

    pls.inverse = True
    corrected_inverse = pls.run(corrected)

    non_nan = ~np.isnan(corrected_inverse.data)
    assert np.allclose(corrected.data[non_nan], corrected_inverse.data[non_nan])
Example #4
0
def test_pathloss_source_type(rtdata):
    """Test PathLossStep forcing source type"""
    with dm.open(rtdata.get_data('nirspec/fs/nrs1_flat_field.fits')) as data:
        pls = PathLossStep()
        pls.source_type = 'extended'
        pls.run(data)

    bad_slits = []
    for idx, slit in enumerate(pls.correction_pars.slits):
        if slit:
            if not np.allclose(slit.data, slit.pathloss_uniform, equal_nan=True):
                bad_slits.append(idx)
    assert not bad_slits, f'Force to uniform failed for slits {bad_slits}'
Example #5
0
def test_pathloss_corrpars(rtdata):
    """Test PathLossStep using correction_pars"""
    with dm.open(rtdata.get_data('nirspec/fs/nrs1_flat_field.fits')) as data:
        pls = PathLossStep()
        corrected = pls.run(data)

        pls.use_correction_pars = True
        corrected_corrpars = pls.run(data)

    bad_slits = []
    for idx, slits in enumerate(zip(corrected.slits, corrected_corrpars.slits)):
        corrected_slit, corrected_corrpars_slit = slits
        if not np.allclose(corrected_slit.data, corrected_corrpars_slit.data, equal_nan=True):
            bad_slits.append(idx)
    assert not bad_slits, f'correction_pars failed for slits {bad_slits}'
Example #6
0
def test_pathloss_source_type(jail, rtdata_module):
    """Test PathLossStep forcing source type"""
    rtdata = rtdata_module
    data = dm.open(rtdata.get_data('nirspec/mos/usf_wavecorr.fits'))

    pls = PathLossStep()
    pls.source_type = 'extended'
    pls.run(data)

    bad_slits = []
    for idx, slit in enumerate(pls.correction_pars.slits):
        if slit:
            if not np.allclose(
                    slit.data, slit.pathloss_uniform, equal_nan=True):
                bad_slits.append(idx)
    assert not bad_slits, f'Force to uniform failed for slits {bad_slits}'
Example #7
0
def test_pathloss_inverse(rtdata):
    """Test PathLossStep using inversion"""
    data = dm.open(rtdata.get_data('nirspec/fs/nrs1_flat_field.fits'))

    pls = PathLossStep()
    corrected = pls.run(data)

    pls.inverse = True
    corrected_inverse = pls.run(corrected)

    bad_slits = []
    for idx, slits in enumerate(zip(data.slits, corrected_inverse.slits)):
        data_slit, corrected_inverse_slit = slits
        non_nan = ~np.isnan(corrected_inverse_slit.data)
        if not np.allclose(data_slit.data[non_nan], corrected_inverse_slit.data[non_nan]):
            bad_slits.append(idx)
    assert not bad_slits, f'Inversion failed for slits {bad_slits}'
Example #8
0
def test_pathloss_corrpars(jail, rtdata_module):
    """Test PathLossStep using correction_pars"""
    rtdata = rtdata_module
    data = dm.open(rtdata.get_data('nirspec/mos/usf_wavecorr.fits'))

    pls = PathLossStep()
    corrected = pls.run(data)

    pls.use_correction_pars = True
    corrected_corrpars = pls.run(data)

    bad_slits = []
    for idx, slits in enumerate(zip(corrected.slits,
                                    corrected_corrpars.slits)):
        corrected_slit, corrected_corrpars_slit = slits
        if not np.allclose(corrected_slit.data,
                           corrected_corrpars_slit.data,
                           equal_nan=True):
            bad_slits.append(idx)
    assert not bad_slits, f'correction_pars failed for slits {bad_slits}'