Example #1
0
def test_pixel_scale_ratio_spec(miri_rate, ratio):
    im = AssignWcsStep.call(miri_rate, sip_approx=False)
    result1 = ResampleSpecStep.call(im)
    result2 = ResampleSpecStep.call(im, pixel_scale_ratio=ratio)

    assert_allclose(np.array(result1.data.shape),
                    np.array(result2.data.shape) * ratio,
                    rtol=1,
                    atol=1)
def output_hdul(set_inandout_filenames, config):
    set_inandout_filenames_info = core_utils.read_info4outputhdul(config, set_inandout_filenames)
    step, txt_name, step_input_file, step_output_file, run_calwebb_spec2, outstep_file_suffix = set_inandout_filenames_info
    skip_runing_pipe_step = config.getboolean("tests_only", "_".join((step, "tests")))
    # Only run step if data is not IFU
    inhdu = core_utils.read_hdrfits(step_input_file, info=False, show_hdr=False)
    end_time = '0.0'
    print("Is the input file IFU? = ", core_utils.check_IFU_true(inhdu))
    if not core_utils.check_IFU_true(inhdu):
        stp = ResampleSpecStep()
        # if run_calwebb_spec2 is True calwebb_spec2 will be called, else individual steps will be ran
        step_completed = False
        if run_calwebb_spec2:
            # read the assign wcs fits file
            local_step_output_file = core_utils.read_completion_to_full_run_map("full_run_map.txt", step)
            hdul = core_utils.read_hdrfits(local_step_output_file, info=False, show_hdr=False)
            # move the output file into the working directory
            working_directory = config.get("calwebb_spec2_input_file", "working_directory")
            step_output_file = os.path.join(working_directory, local_step_output_file)
            print ("Step product was saved as: ", step_output_file)
            subprocess.run(["mv", local_step_output_file, step_output_file])
            return hdul
        else:
            if config.getboolean("steps", step):
                print ("*** Step "+step+" set to True")
                if os.path.isfile(step_input_file):
                    if not skip_runing_pipe_step:
                        # get the right configuration files to run the step
                        local_pipe_cfg_path = config.get("calwebb_spec2_input_file", "local_pipe_cfg_path")
                        # start the timer to compute the step running time
                        start_time = time.time()
                        if local_pipe_cfg_path == "pipe_source_tree_code":
                            result = stp.call(step_input_file)
                        else:
                            result = stp.call(step_input_file, config_file=local_pipe_cfg_path+'/resample_spec.cfg')
                        result.save(step_output_file)
                        # end the timer to compute the step running time
                        end_time = repr(time.time() - start_time)   # this is in seconds
                        print("Step "+step+" took "+end_time+" seconds to finish")
                    step_completed = True
                    core_utils.add_completed_steps(txt_name, step, outstep_file_suffix, step_completed, end_time)
                    hdul = core_utils.read_hdrfits(step_output_file, info=False, show_hdr=False)
                    return hdul
                else:
                    core_utils.add_completed_steps(txt_name, step, outstep_file_suffix, step_completed, end_time)
                    pytest.skip("Skipping "+step+" because the input file does not exist.")
            else:
                core_utils.add_completed_steps(txt_name, step, outstep_file_suffix, step_completed, end_time)
                pytest.skip("Skipping "+step+". Step set to False in configuration file.")
    else:
        pytest.skip("Skipping "+step+" because data is IFU data and the resample will be done in cube_build.")
Example #3
0
def test_miri_wcs_roundtrip(miri_rate):
    im = AssignWcsStep.call(miri_rate)
    im = ResampleSpecStep.call(im)

    x, y = grid_from_bounding_box(im.meta.wcs.bounding_box)
    ra, dec, lam = im.meta.wcs(x, y)
    xp, yp = im.meta.wcs.invert(ra, dec, lam)

    assert_allclose(x, xp, atol=1e-8)
    assert_allclose(y, yp, atol=1e-8)
Example #4
0
def test_nirspec_wcs_roundtrip(nirspec_rate):
    im = AssignWcsStep.call(nirspec_rate)
    im = Extract2dStep.call(im)
    im = ResampleSpecStep.call(im)

    for slit in im.slits:
        x, y = grid_from_bounding_box(slit.meta.wcs.bounding_box)
        ra, dec, lam = slit.meta.wcs(x, y)
        xp, yp = slit.meta.wcs.invert(ra, dec, lam)

        assert_allclose(x, xp, atol=1e-8)
        assert_allclose(y, yp, atol=1e-8)
Example #5
0
def test_spatial_transform():
    """
    Calling the backwards WCS transform gives the same results
    for ``negative RA`` and ``negative RA + 360``.
    """
    im = ImageModel()
    im.meta.wcsinfo._instance.update(wcsinfo)
    im.meta.instrument._instance.update(instrument)
    im.meta.exposure._instance.update(exposure)
    im.meta.observation._instance.update(observation)
    im.meta.subarray._instance.update(subarray)

    im = AssignWcsStep.call(im)
    im.data = np.random.rand(416, 72)
    im.error = np.random.rand(416, 72)
    im.dq = np.random.rand(416, 72)

    im = ResampleSpecStep.call(im)
    x, y = grid_from_bounding_box(im.meta.wcs.bounding_box)
    ra, dec, lam = im.meta.wcs(x, y)
    ra1 = np.where(ra < 0, 360 + ra, ra)
    assert_allclose(im.meta.wcs.invert(ra, dec, lam),
                    im.meta.wcs.invert(ra1, dec, lam))
Example #6
0
def output_hdul(set_inandout_filenames, config):
    set_inandout_filenames_info = core_utils.read_info4outputhdul(
        config, set_inandout_filenames)
    step, txt_name, step_input_file, step_output_file, run_calwebb_spec2, outstep_file_suffix = set_inandout_filenames_info
    run_pipe_step = config.getboolean("run_pipe_steps", step)
    # determine which tests are to be run
    resample_spec_completion_tests = config.getboolean(
        "run_pytest", "_".join((step, "completion", "tests")))
    #resample_spec_reffile_tests = config.getboolean("run_pytest", "_".join((step, "reffile", "tests")))
    #resample_spec_validation_tests = config.getboolean("run_pytest", "_".join((step, "validation", "tests")))
    run_pytests = [
        resample_spec_completion_tests
    ]  #, resample_spec_reffile_tests, resample_spec_validation_tests]

    end_time = '0.0'
    # Only run step if data is not IFU or BOTS
    mode_used = config.get("calwebb_spec2_input_file", "mode_used").lower()
    working_directory = config.get("calwebb_spec2_input_file",
                                   "working_directory")
    initial_input_file = config.get("calwebb_spec2_input_file", "input_file")
    initial_input_file = os.path.join(working_directory, initial_input_file)
    detector = fits.getval(initial_input_file, "DETECTOR", 0)
    if not os.path.isfile(initial_input_file):
        pytest.skip(
            "Skipping " + step +
            " because the initial input file given in PTT_config.cfg does not exist."
        )

    if mode_used != "bots" and mode_used != "ifu":
        # if run_calwebb_spec2 is True calwebb_spec2 will be called, else individual steps will be ran
        step_completed = False

        # check if the filter is to be changed
        change_filter_opaque = config.getboolean("calwebb_spec2_input_file",
                                                 "change_filter_opaque")
        if change_filter_opaque:
            is_filter_opaque, step_input_filename = change_filter_opaque2science.change_filter_opaque(
                step_input_file, step=step)
            if is_filter_opaque:
                filter_opaque_msg = "With FILTER=OPAQUE, the calwebb_spec2 will run up to the extract_2d step. Resample pytest now set to Skip."
                print(filter_opaque_msg)
                core_utils.add_completed_steps(txt_name, step,
                                               outstep_file_suffix,
                                               step_completed, end_time)
                pytest.skip("Skipping " + step +
                            " because the input file does not exist.")

        if run_calwebb_spec2:
            hdul = core_utils.read_hdrfits(step_output_file,
                                           info=False,
                                           show_hdr=False)
            return hdul, step_output_file, run_pytests
        else:

            if run_pipe_step:
                # Create the logfile for PTT, but erase the previous one if it exists
                PTTcalspec2_log = os.path.join(
                    working_directory,
                    'PTT_calspec2_' + detector + '_' + step + '.log')
                if os.path.isfile(PTTcalspec2_log):
                    os.remove(PTTcalspec2_log)
                print(
                    "Information outputed to screen from PTT will be logged in file: ",
                    PTTcalspec2_log)
                for handler in logging.root.handlers[:]:
                    logging.root.removeHandler(handler)
                logging.basicConfig(filename=PTTcalspec2_log,
                                    level=logging.INFO)
                # print pipeline version
                import jwst
                pipeline_version = "\n *** Using jwst pipeline version: " + jwst.__version__ + " *** \n"
                print(pipeline_version)
                logging.info(pipeline_version)
                if change_filter_opaque:
                    logging.info(filter_opaque_msg)

                if os.path.isfile(step_input_file):

                    msg = " *** Step " + step + " set to True"
                    print(msg)
                    logging.info(msg)
                    stp = ResampleSpecStep()

                    # check that previous pipeline steps were run up to this point
                    core_utils.check_completed_steps(step, step_input_file)

                    # get the right configuration files to run the step
                    local_pipe_cfg_path = config.get(
                        "calwebb_spec2_input_file", "local_pipe_cfg_path")
                    # start the timer to compute the step running time
                    start_time = time.time()
                    if local_pipe_cfg_path == "pipe_source_tree_code":
                        result = stp.call(step_input_file)
                    else:
                        result = stp.call(step_input_file,
                                          config_file=local_pipe_cfg_path +
                                          '/resample_spec.cfg')
                    result.save(step_output_file)
                    # end the timer to compute the step running time
                    end_time = repr(time.time() -
                                    start_time)  # this is in seconds
                    msg = "Step " + step + " took " + end_time + " seconds to finish"
                    print(msg)
                    logging.info(msg)
                    step_completed = True
                    hdul = core_utils.read_hdrfits(step_output_file,
                                                   info=False,
                                                   show_hdr=False)

                    # rename and move the pipeline log file
                    try:
                        calspec2_pilelog = "calspec2_pipeline_" + step + "_" + detector + ".log"
                        pytest_workdir = os.getcwd()
                        logfile = glob(pytest_workdir + "/pipeline.log")[0]
                        os.rename(
                            logfile,
                            os.path.join(working_directory, calspec2_pilelog))
                    except:
                        IndexError

                    # add the running time for this step
                    core_utils.add_completed_steps(txt_name, step,
                                                   outstep_file_suffix,
                                                   step_completed, end_time)
                    return hdul, step_output_file, run_pytests

                else:
                    msg = " The input file does not exist. Skipping step."
                    print(msg)
                    logging.info(msg)
                    core_utils.add_completed_steps(txt_name, step,
                                                   outstep_file_suffix,
                                                   step_completed, end_time)
                    pytest.skip("Skipping " + step +
                                " because the input file does not exist.")

            else:
                msg = "Skipping running pipeline step " + step
                print(msg)
                logging.info(msg)
                end_time = core_utils.get_stp_run_time_from_screenfile(
                    step, detector, working_directory)
                if os.path.isfile(step_output_file):
                    hdul = core_utils.read_hdrfits(step_output_file,
                                                   info=False,
                                                   show_hdr=False)
                    step_completed = True
                    # add the running time for this step
                    core_utils.add_completed_steps(txt_name, step,
                                                   outstep_file_suffix,
                                                   step_completed, end_time)
                    return hdul, step_output_file, run_pytests
                else:
                    step_completed = False
                    # add the running time for this step
                    core_utils.add_completed_steps(txt_name, step,
                                                   outstep_file_suffix,
                                                   step_completed, end_time)
                    pytest.skip()

    else:
        pytest.skip("Skipping " + step +
                    " because data is either IFU or BOTS.")
Example #7
0
def test_spatial_transform_miri():
    wcsinfo = {
        'dec_ref': -0.00601415671349804,
        'ra_ref': -0.02073605215697509,
        'roll_ref': -0.0,
        'v2_ref': -453.5134,
        'v3_ref': -373.4826,
        'v3yangle': 0.0,
        'vparity': -1
    }

    instrument = {'detector': 'MIRIMAGE', 'filter': 'P750L', 'name': 'MIRI'}

    observation = {'date': '2019-01-01', 'time': '17:00:00'}

    subarray = {
        'fastaxis': 1,
        'name': 'SUBPRISM',
        'slowaxis': 2,
        'xsize': 72,
        'xstart': 1,
        'ysize': 416,
        'ystart': 529
    }

    exposure = {
        'duration': 11.805952,
        'end_time': 58119.85416,
        'exposure_time': 11.776,
        'frame_time': 0.11776,
        'group_time': 0.11776,
        'groupgap': 0,
        'integration_time': 11.776,
        'nframes': 1,
        'ngroups': 100,
        'nints': 1,
        'nresets_between_ints': 0,
        'nsamples': 1,
        'readpatt': 'FAST',
        'sample_time': 10.0,
        'start_time': 58119.8333,
        'type': 'MIR_LRS-SLITLESS',
        'zero_frame': False
    }

    im = ImageModel()
    im.data = np.random.rand(416, 72)
    im.error = np.random.rand(416, 72)
    im.dq = np.random.rand(416, 72)

    im.meta.wcsinfo._instance.update(wcsinfo)
    im.meta.instrument._instance.update(instrument)
    im.meta.observation._instance.update(observation)
    im.meta.exposure._instance.update(exposure)
    im.meta.subarray._instance.update(subarray)

    out = AssignWcsStep.call(im)
    out = ResampleSpecStep.call(out)
    x, y = grid_from_bounding_box(out.meta.wcs.bounding_box)
    ra, dec, lam = out.meta.wcs(x, y)
    ra1 = np.where(ra < 0, 360 + ra, ra)
    assert_allclose(out.meta.wcs.invert(ra, dec, lam),
                    out.meta.wcs.invert(ra1, dec, lam))
Example #8
0
def test_spatial_transform_nirspec():
    wcsinfo = {
        'dec_ref': -0.00601415671349804,
        'ra_ref': -0.02073605215697509,
        'roll_ref': -0.0,
        'v2_ref': -453.5134,
        'v3_ref': -373.4826,
        'v3yangle': 0.0,
        'vparity': -1
    }

    instrument = {
        'detector': 'NRS1',
        'filter': 'CLEAR',
        'grating': 'PRISM',
        'name': 'NIRSPEC',
        'gwa_tilt': 37.0610,
        'gwa_xtilt': 0.0001,
        'gwa_ytilt': 0.0001
    }

    subarray = {
        'fastaxis': 1,
        'name': 'SUBS200A1',
        'slowaxis': 2,
        'xsize': 72,
        'xstart': 1,
        'ysize': 416,
        'ystart': 529
    }

    observation = {'date': '2016-09-05', 'time': '8:59:37'}

    exposure = {
        'duration': 11.805952,
        'end_time': 58119.85416,
        'exposure_time': 11.776,
        'frame_time': 0.11776,
        'group_time': 0.11776,
        'groupgap': 0,
        'integration_time': 11.776,
        'nframes': 1,
        'ngroups': 100,
        'nints': 1,
        'nresets_between_ints': 0,
        'nsamples': 1,
        'readpatt': 'NRSRAPID',
        'sample_time': 10.0,
        'start_time': 58119.8333,
        'type': 'NRS_FIXEDSLIT',
        'zero_frame': False
    }

    im = ImageModel()
    im.data = np.random.rand(2048, 2048)
    im.error = np.random.rand(2048, 2048)
    im.dq = np.random.rand(2048, 2048)

    im.meta.wcsinfo._instance.update(wcsinfo)
    im.meta.instrument._instance.update(instrument)
    im.meta.observation._instance.update(observation)
    im.meta.exposure._instance.update(exposure)
    im.meta.subarray._instance.update(subarray)
    im = AssignWcsStep.call(im)

    im = Extract2dStep.call(im)

    im = ResampleSpecStep.call(im)

    for slit in im.products:
        x, y = grid_from_bounding_box(slit.meta.wcs.bounding_box)
        ra, dec, lam = slit.meta.wcs(x, y)

        ra1 = np.where(ra < 0, 360 + ra, ra)
        assert_allclose(slit.meta.wcs.invert(ra, dec, lam),
                        slit.meta.wcs.invert(ra1, dec, lam))
Example #9
0
    def test_nirspec_masterbackground_mos_user1d(self):
        """
        Regression test of master background subtraction for NRS MOS when a user 1-D spectrum is provided.

        """
        # input file has 2-D background image added to it
        input_file = self.get_data(*self.test_dir, 'nrs_mos_sci+bkg_cal.fits')
        # user provide 1-D background was created from the 2-D background image
        input_1dbkg_file = self.get_data(*self.test_dir,
                                         'nrs_mos_bkg_x1d.fits')

        result = MasterBackgroundStep.call(input_file,
                                           user_background=input_1dbkg_file,
                                           save_results=True)
        # _________________________________________________________________________
        # One of out tests is to compare the 1-D extracted spectra from
        # the science image (no background added) and the masterbackground subtracted
        # data.

        # run resample_spec  on results from MasterBackground step
        result_2d = ResampleSpecStep.call(result)
        # run 1-D extract on results from MasterBackground step
        result_1d = Extract1dStep.call(result_2d)

        # get input science data with background added
        input_sci_cal_file = self.get_data(*self.test_dir,
                                           'nrs_mos_sci_cal.fits')
        # get 1-D extract on original science data without background
        # this reference data was also run through ResampleSpec
        input_sci_1d_file = self.get_data(*self.ref_loc,
                                          'nrs_mos_sci_extract1dstep.fits')

        input_sci = datamodels.open(input_sci_cal_file)
        sci_cal_1d = datamodels.open(input_sci_1d_file)
        num_spec = len(sci_cal_1d.spec)

        # the user 1D spectrum may not cover the entire wavelength range of the
        # science data.  Find the wavelength range of user 1-D spectra

        input_1dbkg_1d = datamodels.open(input_1dbkg_file)
        user_wave = input_1dbkg_1d.spec[0].spec_table['wavelength']
        user_flux = input_1dbkg_1d.spec[0].spec_table['flux']
        user_wave_valid = np.where(user_flux > 0)
        min_user_wave = np.amin(user_wave[user_wave_valid])
        max_user_wave = np.amax(user_wave[user_wave_valid])
        input_1dbkg_1d.close()

        # loop over each slit and perform 2 tests on each slit
        for i in range(num_spec):
            # ______________________________________________________________________
            # Test 1 compare extracted spectra data from the science data
            # to extracted spectra from the output
            # from MasterBackground subtraction.
            sci_spec_1d = sci_cal_1d.spec[i].spec_table['flux']
            sci_wave = sci_cal_1d.spec[i].spec_table['wavelength']
            result_spec_1d = result_1d.spec[i].spec_table['flux']

            # find the waverange covered by both user 1-D and science slit
            sci_wave_valid = np.where(sci_spec_1d > 0)
            min_wave = np.amin(sci_wave[sci_wave_valid])
            max_wave = np.amax(sci_wave[sci_wave_valid])
            if min_user_wave > min_wave:
                min_wave = min_user_wave
            if max_user_wave < max_wave:
                max_wave = max_user_wave

            sub_spec = sci_spec_1d - result_spec_1d
            valid = np.where(
                np.logical_and(sci_wave > min_wave, sci_wave < max_wave))
            sub_spec = sub_spec[valid]
            mean_sub = np.nanmean(sub_spec)
            atol = 1.5
            assert_allclose(mean_sub, 0, atol=atol)
            # ______________________________________________________________________
            # Test 2  compare the science  data with no background
            # to the output from the masterBackground Subtraction step
            # background subtracted science image.
            bb = input_sci.slits[i].meta.wcs.bounding_box
            x, y = grid_from_bounding_box(bb)
            ra, dec, lam = input_sci.slits[i].meta.wcs(x, y)
            valid = np.isfinite(lam)

            sci = input_sci.slits[i].data
            result_slit = result.slits[i].data

            # check for outliers in the science image that could cause test
            # to fail. These could be cosmic ray hits or other yeck that
            # messes up the science data - ignores these cases
            sci_mean = np.nanmean(sci[valid])
            sci_std = np.nanstd(sci[valid])
            upper = sci_mean + sci_std * 5.0
            lower = sci_mean - sci_std * 5.0
            mask_clean = np.logical_and(sci[valid] < upper, sci[valid] > lower)

            # for this slit subtract the background subtracted data from
            # the science data with no background added
            sub = result_slit - sci
            # do not look at outliers - they confuse things
            sub_valid = sub[valid]
            mean_sub = np.mean(sub_valid[mask_clean])
            atol = 0.1
            assert_allclose(np.absolute(mean_sub), 0, atol=atol)
        # ______________________________________________________________________
        # Test 3 Compare background sutracted science data (results)
        #  to a truth file. This data is MultiSlit data

        result_file = result.meta.filename
        ref_file = self.get_data(*self.ref_loc,
                                 'nrs_mos_sci+bkg_masterbackgroundstep.fits')

        outputs = [(result_file, ref_file)]
        self.compare_outputs(outputs)
        input_sci.close()
        result.close()
Example #10
0
    def test_nirspec_masterbackground_mos_user1d(self):
        """
        Regression test of master background subtraction for NRS MOS when a user 1-D spectrum is provided.

        """
        # input file has 2-D background image added to it
        input_file = self.get_data(*self.test_dir,
                                    'nrs_mos_sci+bkg_cal.fits')
        # user provide 1-D background was created from the 2-D background image
        input_1dbkg_file = self.get_data(*self.test_dir,
                                          'nrs_mos_bkg_x1d.fits')

        result = MasterBackgroundStep.call(input_file,
                                           user_background=input_1dbkg_file,
                                           save_results=True)
        # _________________________________________________________________________
        # One of out tests is to compare the 1-D extracted spectra from
        # the science image (no background added) and the masterbackground subtracted
        # data.

        # run resample_spec  on results from MasterBackground step
        result_2d = ResampleSpecStep.call(result)
        # run 1-D extract on results from MasterBackground step
        result_1d = Extract1dStep.call(result_2d)

        # get input science data with background added
        input_sci_cal_file = self.get_data(*self.test_dir,
                                            'nrs_mos_sci_cal.fits')
        # get 1-D extract on original science data without background
        # this reference data was also run through ResampleSpec
        input_sci_1d_file = self.get_data(*self.ref_loc,
                                            'nrs_mos_sci_extract1dstep.fits')

        input_sci = datamodels.open(input_sci_cal_file)
        sci_cal_1d = datamodels.open(input_sci_1d_file)
        num_spec = len(sci_cal_1d.spec)

        # the user 1D spectrum may not cover the entire wavelength range of the
        # science data.  Find the wavelength range of user 1-D spectra

        input_1dbkg_1d = datamodels.open(input_1dbkg_file)
        user_wave = input_1dbkg_1d.spec[0].spec_table['wavelength']
        user_flux = input_1dbkg_1d.spec[0].spec_table['flux']
        user_wave_valid = np.where(user_flux > 0)
        min_user_wave = np.amin(user_wave[user_wave_valid])
        max_user_wave = np.amax(user_wave[user_wave_valid])
        input_1dbkg_1d.close()

        # loop over each slit and perform 2 tests on each slit
        for i in range(num_spec):
            # ______________________________________________________________________
            # Test 1 compare extracted spectra data from the science data
            # to extracted spectra from the output
            # from MasterBackground subtraction.
            sci_spec_1d = sci_cal_1d.spec[i].spec_table['flux']
            sci_wave = sci_cal_1d.spec[i].spec_table['wavelength']
            result_spec_1d = result_1d.spec[i].spec_table['flux']

            # find the waverange covered by both user 1-D and science slit
            sci_wave_valid = np.where(sci_spec_1d > 0)
            min_wave = np.amin(sci_wave[sci_wave_valid])
            max_wave = np.amax(sci_wave[sci_wave_valid])
            if min_user_wave > min_wave:
                min_wave = min_user_wave
            if max_user_wave < max_wave:
                max_wave = max_user_wave

            sub_spec = sci_spec_1d - result_spec_1d
            valid = np.where(np.logical_and(sci_wave > min_wave, sci_wave < max_wave))
            sub_spec = sub_spec[valid]
            mean_sub = np.nanmean(sub_spec)
            atol = 1.5
            assert_allclose(mean_sub, 0, atol=atol)
            # ______________________________________________________________________
            # Test 2  compare the science  data with no background
            # to the output from the masterBackground Subtraction step
            # background subtracted science image.
            bb = input_sci.slits[i].meta.wcs.bounding_box
            x, y = grid_from_bounding_box(bb)
            ra, dec, lam = input_sci.slits[i].meta.wcs(x, y)
            valid = np.isfinite(lam)

            sci = input_sci.slits[i].data
            result_slit = result.slits[i].data

            # check for outliers in the science image that could cause test
            # to fail. These could be cosmic ray hits or other yeck that
            # messes up the science data - ignores these cases
            sci_mean = np.nanmean(sci[valid])
            sci_std = np.nanstd(sci[valid])
            upper = sci_mean + sci_std*5.0
            lower = sci_mean - sci_std*5.0
            mask_clean = np.logical_and(sci[valid] < upper, sci[valid] > lower)

            # for this slit subtract the background subtracted data from
            # the science data with no background added
            sub = result_slit - sci
            # do not look at outliers - they confuse things
            sub_valid = sub[valid]
            mean_sub = np.mean(sub_valid[mask_clean])
            atol = 0.1
            assert_allclose(np.absolute(mean_sub), 0, atol=atol)
        # ______________________________________________________________________
        # Test 3 Compare background sutracted science data (results)
        #  to a truth file. This data is MultiSlit data

        result_file = result.meta.filename
        ref_file = self.get_data(*self.ref_loc,
                                  'nrs_mos_sci+bkg_masterbackgroundstep.fits')

        outputs = [(result_file, ref_file)]
        self.compare_outputs(outputs)
        input_sci.close()
        result.close()
Example #11
0
def test_spatial_transform_nirspec():
    wcsinfo = {
        'dec_ref': 40,
        'ra_ref': 100,
        'roll_ref': 0,
        'v2_ref': -453.5134,
        'v3_ref': -373.4826,
        'v3yangle': 0.0,
        'vparity': -1
    }

    instrument = {
        'detector': 'NRS1',
        'filter': 'CLEAR',
        'grating': 'PRISM',
        'name': 'NIRSPEC',
        'gwa_tilt': 37.0610,
        'gwa_xtilt': 0.0001,
        'gwa_ytilt': 0.0001
    }

    subarray = {
        'fastaxis': 1,
        'name': 'SUBS200A1',
        'slowaxis': 2,
        'xsize': 72,
        'xstart': 1,
        'ysize': 416,
        'ystart': 529
    }

    observation = {'date': '2016-09-05', 'time': '8:59:37'}

    exposure = {
        'duration': 11.805952,
        'end_time': 58119.85416,
        'exposure_time': 11.776,
        'frame_time': 0.11776,
        'group_time': 0.11776,
        'groupgap': 0,
        'integration_time': 11.776,
        'nframes': 1,
        'ngroups': 100,
        'nints': 1,
        'nresets_between_ints': 0,
        'nsamples': 1,
        'readpatt': 'NRSRAPID',
        'sample_time': 10.0,
        'start_time': 58119.8333,
        'type': 'NRS_FIXEDSLIT',
        'zero_frame': False
    }

    im = ImageModel((2048, 2048))

    im.meta.wcsinfo = wcsinfo
    im.meta.instrument = instrument
    im.meta.observation = observation
    im.meta.exposure = exposure
    im.meta.subarray = subarray

    im = AssignWcsStep.call(im)
    im = Extract2dStep.call(im)
    im = ResampleSpecStep.call(im)

    for slit in im.slits:
        x, y = grid_from_bounding_box(slit.meta.wcs.bounding_box)
        ra, dec, lam = slit.meta.wcs(x, y)
        xp, yp = slit.meta.wcs.invert(ra, dec, lam)

        assert_allclose(x, xp, atol=1e-8)
        assert_allclose(y, yp, atol=1e-8)
Example #12
0
def test_spatial_transform_miri():
    wcsinfo = {
        'dec_ref': 40,
        'ra_ref': 100,
        'roll_ref': 0.0,
        'v2_ref': -453.5134,
        'v3_ref': -373.4826,
        'v3yangle': 0.0,
        'vparity': -1
    }

    instrument = {'detector': 'MIRIMAGE', 'filter': 'P750L', 'name': 'MIRI'}

    observation = {'date': '2019-01-01', 'time': '17:00:00'}

    subarray = {
        'fastaxis': 1,
        'name': 'SLITLESSPRISM',
        'slowaxis': 2,
        'xsize': 72,
        'xstart': 1,
        'ysize': 416,
        'ystart': 529
    }

    exposure = {
        'duration': 11.805952,
        'end_time': 58119.85416,
        'exposure_time': 11.776,
        'frame_time': 0.11776,
        'group_time': 0.11776,
        'groupgap': 0,
        'integration_time': 11.776,
        'nframes': 1,
        'ngroups': 100,
        'nints': 1,
        'nresets_between_ints': 0,
        'nsamples': 1,
        'readpatt': 'FAST',
        'sample_time': 10.0,
        'start_time': 58119.8333,
        'type': 'MIR_LRS-SLITLESS',
        'zero_frame': False
    }

    im = ImageModel((416, 72))

    im.meta.wcsinfo = wcsinfo
    im.meta.instrument = instrument
    im.meta.observation = observation
    im.meta.exposure = exposure
    im.meta.subarray = subarray

    im = AssignWcsStep.call(im)
    im = ResampleSpecStep.call(im)

    x, y = grid_from_bounding_box(im.meta.wcs.bounding_box)
    ra, dec, lam = im.meta.wcs(x, y)
    xp, yp = im.meta.wcs.invert(ra, dec, lam)
    assert_allclose(x, xp, atol=1e-8)
    assert_allclose(y, yp, atol=1e-8)