def phasecorrelate(f, g, axes=None, includeinv=False):
    '''Perform a phase cross correlation along given axes (can include inverse of cross-power spectrum)'''
    ans = _signal.phaseCorrelate(_asf(f)._jdataset(), _asf(g)._jdataset(), axes, includeinv)
    if includeinv:
        return ans[0], ans[1]
    else:
        return ans[0]
def phasecorrelate(f, g, axes=None, includeinv=False):
    '''Perform a phase cross correlation along given axes (can include inverse of cross-power spectrum)'''
    ans = _signal.phaseCorrelate(_asf(f)._jdataset(), _asf(g)._jdataset(), axes, includeinv)
    if includeinv:
        return ans[0], ans[1]
    else:
        return ans[0]
Example #3
0
def correlate(f, g=None, mode='valid', axes=None):
    '''Perform a cross (or auto if g is None) correlation along given axes'''

    f = _asf(f)._jdataset()
    if g is None:
        g = f
    else:
        g = _asf(g)._jdataset()

    if mode == 'same':
        return _signal.correlateToSameShape(f, g, axes)
    elif mode == 'valid':
        return _signal.correlateForOverlap(f, g, axes)
    elif mode == 'full':
        return _signal.correlate(f, g, axes)
    raise ValueError, "mode keyword has unrecognised value"
Example #4
0
def correlate(f, g=None, mode='valid', axes=None):
    '''Perform a cross (or auto if g is None) correlation along given axes'''

    f = _asf(f)._jdataset()
    if g is None:
        g = f
    else:
        g = _asf(g)._jdataset()

    if mode == 'same':
        return _signal.correlateToSameShape(f, g, axes)
    elif mode == 'valid':
        return _signal.correlateForOverlap(f, g, axes)
    elif mode == 'full':
        return _signal.correlate(f, g, axes)
    raise ValueError, "mode keyword has unrecognised value"
def correlate(f, g=None, mode='valid', old_behavior=False, axes=None):
    '''Perform a cross (or auto if g is None) correlation along given axes'''
    if old_behavior:
        raise NotImplementedError, 'Not implemented'

    f = _asf(f)._jdataset()
    if g is None:
        g = f
    else:
        g = _asf(g)._jdataset()

    if mode == 'same':
        return _signal.correlateToSameShape(f, g, axes)
    elif mode == 'valid':
        return _signal.correlateForOverlap(f, g, axes)
    elif mode == 'full':
        return _signal.correlate(f, g, axes)
    raise ValueError, 'mode keyword has unrecognised value'
def convolve(f, g, mode='full', axes=None):
    '''Perform a convolution along given axes'''
    if mode == 'same':
        return _signal.convolveToSameShape(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    elif mode == 'valid':
        return _signal.convolveForOverlap(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    elif mode == 'full':
        return _signal.convolve(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    raise ValueError, 'mode keyword has unrecognised value'
def convolve(f, g, mode='full', axes=None):
    '''Perform a convolution along given axes'''
    if mode == 'same':
        return _signal.convolveToSameShape(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    elif mode == 'valid':
        return _signal.convolveForOverlap(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    elif mode == 'full':
        return _signal.convolve(_asf(f)._jdataset(), _asf(g)._jdataset(), axes)
    raise ValueError, "mode keyword has unrecognised value"