Example #1
0
 def test_fit_profile_simple_b(self):
     _fit_with_constraint = HistFit(
         self._data_container,
         model_density_function=self._model_function,
         bin_evaluation=self._model_function_antiderivative)
     _fit_with_constraint.add_parameter_constraint('b', self._means[1],
                                                   np.sqrt(self._vars[1]))
     self._test_consistency(_fit_with_constraint,
                            self._cov_mat_simple_b_inv)
Example #2
0
 def test_fit_profile_cov_mat_correlated(self):
     _fit_with_constraint = HistFit(
         self._data_container,
         model_density_function=self._model_function,
         bin_evaluation=self._model_function_antiderivative)
     _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'],
                                                          self._means,
                                                          self._cov_mat_cor)
     self._test_consistency(_fit_with_constraint, self._cov_mat_cor_inv)
Example #3
0
    def setUp(self):
        _bin_edges = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
        _data = [
            0.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 3.5, 4.5, 4.5, 4.5,
            4.5, 4.5
        ]
        self._means = np.array([3.654, 7.789])
        self._vars = np.array([2.467, 1.543])
        self._cov_mat_uncor = np.array([[self._vars[0], 0.0],
                                        [0.0, self._vars[1]]])
        self._cov_mat_uncor_inv = np.linalg.inv(self._cov_mat_uncor)
        self._cov_mat_cor = np.array([[self._vars[0], 0.1],
                                      [0.1, self._vars[1]]])
        self._cov_mat_cor_inv = np.linalg.inv(self._cov_mat_cor)
        self._cov_mat_simple_a_inv = np.array([[1.0 / self._vars[0], 0.0],
                                               [0.0, 0.0]])
        self._cov_mat_simple_b_inv = np.array([[0.0, 0.0],
                                               [0.0, 1.0 / self._vars[1]]])

        self._data_container = HistContainer(n_bins=5,
                                             bin_range=(0.0, 5.0),
                                             fill_data=_data,
                                             dtype=float)
        self._data_container.add_error(err_val=1.0)

        _a_test = np.linspace(start=1, stop=2, num=9, endpoint=True)
        _b_test = np.linspace(start=2, stop=3, num=9, endpoint=True)
        self._test_par_values = np.zeros((4, 2, 9))
        self._test_par_values[0, 0] = _a_test
        self._test_par_values[1, 1] = _b_test
        self._test_par_values[2, 0] = _a_test
        self._test_par_values[2, 1] = _b_test
        self._test_par_values[3, 0] = _a_test
        self._test_par_values[3, 1] = _b_test[::-1]  # reverse order
        self._test_par_res = self._test_par_values - self._means.reshape(
            (1, 2, 1))
        self._test_par_res = np.transpose(self._test_par_res, axes=(0, 2, 1))

        self._fit_no_constraints = HistFit(
            self._data_container,
            model_density_function=self._model_function,
            bin_evaluation=self._model_function_antiderivative)
        self._fit_no_constraints.do_fit()
        _cost_function = self._fit_no_constraints._fitter._fcn_wrapper
        self._profile_no_constraints = np.zeros((4, 9))
        for _i in range(4):
            for _j in range(9):
                self._profile_no_constraints[_i, _j] = _cost_function(
                    self._test_par_values[_i, 0, _j],
                    self._test_par_values[_i, 1, _j])
Example #4
0
 def test_bad_input_exception(self):
     _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                    model_density_antiderivative=self._model_function_antiderivative)
     with self.assertRaises(HistFitException):
         _fit_with_constraint.add_parameter_constraint('c', 1.0, 1.0)
     with self.assertRaises(HistFitException):
         _fit_with_constraint.add_matrix_parameter_constraint(['a', 'c'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])
     with self.assertRaises(HistFitException):
         _fit_with_constraint.add_matrix_parameter_constraint(['a'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])
Example #5
0
 def test_fit_profile_cov_mat_uncorrelated(self):
     _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                    model_density_antiderivative=self._model_function_antiderivative)
     _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'], self._means, self._cov_mat_uncor)
     self._test_consistency(_fit_with_constraint, self._cov_mat_uncor_inv)
     _fit_with_constraint_alt = HistFit(self._data_container, model_density_function=self._model_function,
                                        model_density_antiderivative=self._model_function_antiderivative)
     _fit_with_constraint_alt.add_parameter_constraint('a', self._means[0], np.sqrt(self._vars[0]))
     _fit_with_constraint_alt.add_parameter_constraint('b', self._means[1], np.sqrt(self._vars[1]))
     self._test_consistency(_fit_with_constraint_alt, self._cov_mat_uncor_inv)
Example #6
0
    def _get_fit(self, model_density_function=None, model_density_antiderivative=None, cost_function=None):
        '''convenience'''

        model_density_function = model_density_function or hist_model_density

        # TODO: fix default
        cost_function = cost_function or HistCostFunction_NegLogLikelihood(
            data_point_distribution='poisson')

        _fit = HistFit(
            data=self._ref_hist_cont,
            model_density_function=model_density_function,
            model_density_antiderivative=model_density_antiderivative,
            cost_function=cost_function,
            minimizer=self.MINIMIZER
        )
        _fit.add_error(1.0)  # only considered for chi2

        return _fit
Example #7
0
    def test_model_no_pars_raise(self):
        def dummy_model():
            pass

        with self.assertRaises(HistModelFunctionException) as _exc:
            HistFit(data=self._ref_hist_cont,
                    model_density_function=dummy_model,
                    bin_evaluation=dummy_model,
                    minimizer=self.MINIMIZER)

        self.assertIn("needs at least one parameter", _exc.exception.args[0])
Example #8
0
    def test_reserved_parameter_names_raise(self):
        def dummy_model(x, data):
            pass

        with self.assertRaises(HistFitException) as _exc:
            HistFit(data=self._ref_hist_cont,
                    model_density_function=dummy_model,
                    minimizer=self.MINIMIZER)

        self.assertIn('reserved', _exc.exception.args[0])
        self.assertIn('data', _exc.exception.args[0])
Example #9
0
    def test_model_and_antiderivative_no_defaults(self):
        def legendre_grade_2(x, a=1, b=2, c=3):
            return a + b * x + c * 0.5 * (3 * x**2 - 1)

        def legendre_grade_2_integrated(x, a, b, c):
            return 0.5 * x * (2 * a + b * x + c * (x**2 - 1))

        # should not raise an error
        HistFit(data=self._ref_hist_cont,
                model_density_function=legendre_grade_2,
                bin_evaluation=legendre_grade_2_integrated,
                minimizer=self.MINIMIZER)
Example #10
0
    def test_model_and_antiderivative_different_signatures_raise(self):
        def dummy_model(x, mu, sigma):
            pass

        def dummy_model_antiderivative(x, mu, bogus):
            pass

        with self.assertRaises(ValueError) as _exc:
            HistFit(data=self._ref_hist_cont,
                    model_density_function=dummy_model,
                    bin_evaluation=dummy_model_antiderivative,
                    minimizer=self.MINIMIZER)
Example #11
0
    def test_model_varargs_varkwargs_raise(self):
        # TODO: raise even without 'par'
        def dummy_model(x, par, *varargs, **varkwargs):
            pass

        with self.assertRaises(HistModelFunctionException) as _exc:
            HistFit(data=self._ref_hist_cont,
                    model_density_function=dummy_model,
                    bin_evaluation=dummy_model,
                    minimizer=self.MINIMIZER)

        self.assertIn('variable', _exc.exception.args[0])
        self.assertIn('varargs', _exc.exception.args[0])
Example #12
0
    def test_model_and_antiderivative_different_signatures_raise(self):
        def dummy_model(x, data):
            pass

        def dummy_model_antiderivative(x, bogus):
            pass

        with self.assertRaises(HistModelFunctionException) as _exc:
            HistFit(data=self._ref_hist_cont,
                    model_density_function=dummy_model,
                    model_density_antiderivative=dummy_model_antiderivative,
                    minimizer=self.MINIMIZER)

        self.assertIn('require the same argument structures', _exc.exception.args[0])
        self.assertIn('data', _exc.exception.args[0])
Example #13
0
class TestParameterConstraintInHistFit(unittest.TestCase):

    @staticmethod
    def _model_function(x, a, b):
        return a * x + b

    @staticmethod
    def _model_function_antiderivative(x, a, b):
        return 0.5 * a * x ** 2 + b * x

    def _expected_profile_diff(self, res, cov_mat_inv):
        return res.dot(cov_mat_inv).dot(res)

    def _test_consistency(self, constrained_fit, par_cov_mat_inv):
        constrained_fit.do_fit()
        _cost_function = constrained_fit._fitter._fcn_wrapper
        for _i in range(4):
            for _j in range(9):
                _a = self._test_par_values[_i, 0, _j]
                _b = self._test_par_values[_i, 1, _j]
                _profile_constrained = _cost_function(self._test_par_values[_i, 0, _j], self._test_par_values[_i, 1, _j])
                _diff = _profile_constrained - self._profile_no_constraints[_i, _j]
                _expected_profile_diff = self._expected_profile_diff(self._test_par_res[_i, _j], par_cov_mat_inv)
                self.assertTrue(np.abs(_diff - _expected_profile_diff) < 1e-12)

    def setUp(self):
        _bin_edges = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
        _data = [
            0.5,
            1.5, 1.5,
            2.5, 2.5, 2.5,
            3.5, 3.5, 3.5, 3.5,
            4.5, 4.5, 4.5, 4.5, 4.5
        ]
        self._means = np.array([3.654, 7.789])
        self._vars = np.array([2.467, 1.543])
        self._cov_mat_uncor = np.array([[self._vars[0], 0.0], [0.0, self._vars[1]]])
        self._cov_mat_uncor_inv = np.linalg.inv(self._cov_mat_uncor)
        self._cov_mat_cor = np.array([[self._vars[0], 0.1], [0.1, self._vars[1]]])
        self._cov_mat_cor_inv = np.linalg.inv(self._cov_mat_cor)
        self._cov_mat_simple_a_inv = np.array([[1.0 / self._vars[0], 0.0], [0.0, 0.0]])
        self._cov_mat_simple_b_inv = np.array([[0.0, 0.0], [0.0, 1.0 / self._vars[1]]])

        self._data_container = HistContainer(n_bins=5, bin_range=(0.0, 5.0), fill_data=_data, dtype=float)
        self._data_container.add_error(err_val=1.0)

        _a_test = np.linspace(start=1, stop=2, num=9, endpoint=True)
        _b_test = np.linspace(start=2, stop=3, num=9, endpoint=True)
        self._test_par_values = np.zeros((4, 2, 9))
        self._test_par_values[0, 0] = _a_test
        self._test_par_values[1, 1] = _b_test
        self._test_par_values[2, 0] = _a_test
        self._test_par_values[2, 1] = _b_test
        self._test_par_values[3, 0] = _a_test
        self._test_par_values[3, 1] = _b_test[::-1]  # reverse order
        self._test_par_res = self._test_par_values - self._means.reshape((1, 2, 1))
        self._test_par_res = np.transpose(self._test_par_res, axes=(0, 2, 1))

        self._fit_no_constraints = HistFit(self._data_container, model_density_function=self._model_function,
                                           model_density_antiderivative=self._model_function_antiderivative)
        self._fit_no_constraints.do_fit()
        _cost_function = self._fit_no_constraints._fitter._fcn_wrapper
        self._profile_no_constraints = np.zeros((4, 9))
        for _i in range(4):
            for _j in range(9):
                self._profile_no_constraints[_i, _j] = _cost_function(
                    self._test_par_values[_i, 0, _j],
                    self._test_par_values[_i, 1, _j])

    def test_bad_input_exception(self):
        _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                       model_density_antiderivative=self._model_function_antiderivative)
        with self.assertRaises(HistFitException):
            _fit_with_constraint.add_parameter_constraint('c', 1.0, 1.0)
        with self.assertRaises(HistFitException):
            _fit_with_constraint.add_matrix_parameter_constraint(['a', 'c'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])
        with self.assertRaises(HistFitException):
            _fit_with_constraint.add_matrix_parameter_constraint(['a'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])

    def test_fit_profile_cov_mat_uncorrelated(self):
        _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                       model_density_antiderivative=self._model_function_antiderivative)
        _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'], self._means, self._cov_mat_uncor)
        self._test_consistency(_fit_with_constraint, self._cov_mat_uncor_inv)
        _fit_with_constraint_alt = HistFit(self._data_container, model_density_function=self._model_function,
                                           model_density_antiderivative=self._model_function_antiderivative)
        _fit_with_constraint_alt.add_parameter_constraint('a', self._means[0], np.sqrt(self._vars[0]))
        _fit_with_constraint_alt.add_parameter_constraint('b', self._means[1], np.sqrt(self._vars[1]))
        self._test_consistency(_fit_with_constraint_alt, self._cov_mat_uncor_inv)

    def test_fit_profile_cov_mat_correlated(self):
        _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                       model_density_antiderivative=self._model_function_antiderivative)
        _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'], self._means, self._cov_mat_cor)
        self._test_consistency(_fit_with_constraint, self._cov_mat_cor_inv)

    def test_fit_profile_simple_a(self):
        _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                       model_density_antiderivative=self._model_function_antiderivative)
        _fit_with_constraint.add_parameter_constraint('a', self._means[0], np.sqrt(self._vars[0]))
        self._test_consistency(_fit_with_constraint, self._cov_mat_simple_a_inv)

    def test_fit_profile_simple_b(self):
        _fit_with_constraint = HistFit(self._data_container, model_density_function=self._model_function,
                                       model_density_antiderivative=self._model_function_antiderivative)
        _fit_with_constraint.add_parameter_constraint('b', self._means[1], np.sqrt(self._vars[1]))
        self._test_consistency(_fit_with_constraint, self._cov_mat_simple_b_inv)