Example #1
0
def main():
    # Start by loading all the modules
    action_map = get_module_map(kafka.tools.assigner.actions, kafka.tools.assigner.actions.ActionModule)
    sizer_map = get_module_map(kafka.tools.assigner.sizers, kafka.tools.assigner.sizers.SizerModule)
    plugins = get_all_plugins()

    # Set up and parse all CLI arguments
    args = set_up_arguments(action_map, sizer_map, plugins)
    run_plugins_at_step(plugins, 'set_arguments', args)

    tools_path = get_tools_path(args.tools_path)
    check_java_home()

    cluster = Cluster.create_from_zookeeper(args.zookeeper, getattr(args, 'default_retention', 1))
    run_plugins_at_step(plugins, 'set_cluster', cluster)

    # If the module needs the partition sizes, call a size module to get the information
    check_and_get_sizes(action_map[args.action], args, cluster, sizer_map)
    run_plugins_at_step(plugins, 'after_sizes')
    print_leadership("before", cluster, args.leadership)

    # Clone the cluster, and run the action to generate a new cluster state
    newcluster = cluster.clone()
    action_to_run = action_map[args.action](args, newcluster)
    action_to_run.process_cluster()
    run_plugins_at_step(plugins, 'set_new_cluster', action_to_run.cluster)
    print_leadership("after", newcluster, args.leadership)

    move_partitions = cluster.changed_partitions(action_to_run.cluster)
    batches = split_partitions_into_batches(move_partitions, batch_size=args.moves, use_class=Reassignment)
    run_plugins_at_step(plugins, 'set_batches', batches)

    log.info("Partition moves required: {0}".format(len(move_partitions)))
    log.info("Number of batches: {0}".format(len(batches)))
    dry_run = is_dry_run(args)

    for i, batch in enumerate(batches):
        log.info("Executing partition reassignment {0}/{1}: {2}".format(i + 1, len(batches), repr(batch)))
        batch.execute(i + 1, len(batches), args.zookeeper, tools_path, plugins, dry_run)

    run_plugins_at_step(plugins, 'before_ple')

    if not args.skip_ple:
        all_cluster_partitions = [p for p in action_to_run.cluster.partitions(args.exclude_topics)]
        batches = split_partitions_into_batches(all_cluster_partitions, batch_size=args.ple_size, use_class=ReplicaElection)
        log.info("Number of replica elections: {0}".format(len(batches)))
        run_preferred_replica_elections(batches, args, tools_path, plugins, dry_run)

    run_plugins_at_step(plugins, 'finished')

    if args.output_json:
        data = {
            'before': cluster.to_dict(),
            'after': action_to_run.cluster.to_dict()
        }
        sys.stdout.write(json.dumps(data, indent=4, sort_keys=True))

    return os.EX_OK
Example #2
0
    def test_split_batches_proper_class(self):
        batches = split_partitions_into_batches(self.topic.partitions,
                                                batch_size=100,
                                                use_class=Reassignment)
        assert isinstance(batches[0], Reassignment)

        batches = split_partitions_into_batches(self.topic.partitions,
                                                batch_size=100,
                                                use_class=ReplicaElection)
        assert isinstance(batches[0], ReplicaElection)
Example #3
0
def main():
    # Start by loading all the modules
    action_map = get_module_map(kafka.tools.assigner.actions, kafka.tools.assigner.actions.ActionModule)
    sizer_map = get_module_map(kafka.tools.assigner.sizers, kafka.tools.assigner.sizers.SizerModule)
    plugins = get_all_plugins()

    # Set up and parse all CLI arguments
    args = set_up_arguments(action_map, sizer_map, plugins)
    run_plugins_at_step(plugins, 'set_arguments', args)

    tools_path = get_tools_path(args.tools_path)
    check_java_home()

    cluster = Cluster.create_from_zookeeper(args.zookeeper)
    run_plugins_at_step(plugins, 'set_cluster', cluster)

    # If the module needs the partition sizes, call a size module to get the information
    check_and_get_sizes(action_map[args.action], args, cluster, sizer_map)
    run_plugins_at_step(plugins, 'after_sizes')
    print_leadership("before", cluster, args.leadership)

    # Clone the cluster, and run the action to generate a new cluster state
    newcluster = cluster.clone()
    action_to_run = action_map[args.action](args, newcluster)
    action_to_run.process_cluster()
    run_plugins_at_step(plugins, 'set_new_cluster', action_to_run.cluster)
    print_leadership("after", newcluster, args.leadership)

    move_partitions = cluster.changed_partitions(action_to_run.cluster)
    batches = split_partitions_into_batches(move_partitions, batch_size=args.moves, use_class=Reassignment)
    run_plugins_at_step(plugins, 'set_batches', batches)

    log.info("Partition moves required: {0}".format(len(move_partitions)))
    log.info("Number of batches: {0}".format(len(batches)))
    dry_run = is_dry_run(args)

    for i, batch in enumerate(batches):
        log.info("Executing partition reassignment {0}/{1}: {2}".format(i + 1, len(batches), repr(batch)))
        batch.execute(i + 1, len(batches), args.zookeeper, tools_path, plugins, dry_run)

    run_plugins_at_step(plugins, 'before_ple')

    if not args.skip_ple:
        all_cluster_partitions = [p for p in action_to_run.cluster.partitions()]
        batches = split_partitions_into_batches(all_cluster_partitions, batch_size=args.ple_size, use_class=ReplicaElection)
        log.info("Number of replica elections: {0}".format(len(batches)))
        run_preferred_replica_elections(batches, args, tools_path, plugins, dry_run)

    run_plugins_at_step(plugins, 'finished')

    return os.EX_OK
Example #4
0
 def test_split_batches_notenough(self):
     batches = split_partitions_into_batches(self.topic.partitions,
                                             batch_size=20,
                                             use_class=Reassignment)
     partition_count = sum([len(batch.partitions) for batch in batches])
     assert len(batches) == 1
     assert partition_count == 10
Example #5
0
 def test_split_batches_notenough(self):
     batches = split_partitions_into_batches(self.topic.partitions, batch_size=20, use_class=Reassignment)
     partition_count = sum([len(batch.partitions) for batch in batches])
     assert len(batches) == 1
     assert partition_count == 10
Example #6
0
    def test_split_batches_proper_class(self):
        batches = split_partitions_into_batches(self.topic.partitions, batch_size=100, use_class=Reassignment)
        assert isinstance(batches[0], Reassignment)

        batches = split_partitions_into_batches(self.topic.partitions, batch_size=100, use_class=ReplicaElection)
        assert isinstance(batches[0], ReplicaElection)
Example #7
0
 def test_split_batches_empty(self):
     partitions = []
     batches = split_partitions_into_batches(partitions, batch_size=1, use_class=Reassignment)
     assert len(batches) == 0
Example #8
0
def main():
    # Start by loading all the modules
    action_map = get_action_map()
    sizer_map = get_sizer_map()
    plugins_list = get_plugins_list()

    # Instantiate all plugins
    plugins = [plugin() for plugin in plugins_list]

    # Set up and parse all CLI arguments
    args = set_up_arguments(action_map, sizer_map, plugins)

    for plugin in plugins:
        plugin.set_arguments(args)

    tools_path = get_tools_path(args.tools_path)
    check_java_home()
    cluster = Cluster.create_from_zookeeper(args.zookeeper)

    for plugin in plugins:
        plugin.set_cluster(cluster)

    # If the module needs the partition sizes, call a size module to get the information
    check_and_get_sizes(action_map[args.action], args, cluster, sizer_map)

    for plugin in plugins:
        plugin.after_sizes()

    if args.leadership:
        log.info("Cluster Leadership Balance (before):")
        cluster.log_broker_summary()

    # Clone the cluster, and run the action to generate a new cluster state
    newcluster = cluster.clone()
    action_to_run = action_map[args.action](args, newcluster)
    action_to_run.process_cluster()

    for plugin in plugins:
        plugin.set_new_cluster(action_to_run.cluster)

    if args.leadership:
        log.info("Cluster Leadership Balance (after):")
        newcluster.log_broker_summary()

    move_partitions = cluster.changed_partitions(action_to_run.cluster)
    batches = split_partitions_into_batches(move_partitions, batch_size=args.moves, use_class=Reassignment)

    for plugin in plugins:
        plugin.set_batches(batches)

    log.info("Partition moves required: {0}".format(len(move_partitions)))
    log.info("Number of batches: {0}".format(len(batches)))

    dry_run = args.generate or not args.execute
    if dry_run:
        log.info("--execute flag NOT specified. DRY RUN ONLY")

    for i, batch in enumerate(batches):
        log.info("Executing partition reassignment {0}/{1}: {2}".format(i + 1, len(batches), repr(batch)))
        batch.execute(i + 1, len(batches), args.zookeeper, tools_path, plugins, dry_run)

    for plugin in plugins:
        plugin.before_ple()

    if not args.skip_ple:
        batches = split_partitions_into_batches(move_partitions, batch_size=args.moves, use_class=ReplicaElection)
        log.info("Number of replica elections: {0}".format(len(batches)))
        run_preferred_replica_elections(batches, args, tools_path, plugins, dry_run)

    for plugin in plugins:
        plugin.finished()

    return 0
Example #9
0
 def test_split_batches_empty(self):
     partitions = []
     batches = split_partitions_into_batches(partitions,
                                             batch_size=1,
                                             use_class=Reassignment)
     assert len(batches) == 0