Example #1
0
    def test_pytorch_starter_load_then_train(self, mq_logger):
        k = pytorchKernel.PS_torch(mq_logger)

        # will also analyze data
        k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)
        # k._debug_continue_training = True
        k.load_model_weight_continue_train()
Example #2
0
    def test_pytorch_FL_in_model_early_stop(self, mq_logger):
        self._prepare_data(mq_logger)
        kernel_load_back = pytorchKernel.PS_torch(mq_logger)

        kernel_load_back.load_state_data_only(
            KernelRunningState.PREPARE_DATA_DONE)
        kernel_load_back.build_and_set_model()
        kernel_load_back.train_model()
Example #3
0
 def test_pytorch_dataset_mean_std(self, mq_logger):
     k = pytorchKernel.PS_torch(mq_logger)
     # k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE,
     # dump_flag=True)  # will also analyze data
     k._debug_less_data = True
     k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE,
           dump_flag=False)  # dump not working for torch
     k.pre_train()
     assert k.img_mean is not None
Example #4
0
    def test_pytorch_cv_train_more(self, mq_logger):
        k = pytorchKernel.PS_torch(mq_logger)

        # k._debug_less_data = True
        k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)

        k.build_and_set_model()
        k.logger.debug("start train 5 epochs")
        k.num_epochs = 5
        k.train_model()
Example #5
0
    def test_pytorch_cv_data_prepare(self, mq_logger):
        k = pytorchKernel.PS_torch(mq_logger)
        k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)

        # k2 = pytorchKernel.PS_torch(mq_logger)
        # k2.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)

        l = len(k.data_loader)
        l_dev = len(k.data_loader_dev)
        ratio = l / l_dev

        assert ratio > 3.5  # around 0.8/0.2
        assert ratio < 4.5
Example #6
0
    def test_pytorch_cv_train_dev(self, mq_logger):
        k = pytorchKernel.PS_torch(mq_logger)

        k._debug_less_data = True
        k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)
        k.logger.debug("data done")

        k.build_and_set_model()
        k.num_epochs = 1
        k.logger.debug("start train one epoch")
        k.train_model()
        k.logger.debug("end train one epoch")
        assert True
Example #7
0
    def test_pytorch_data_aug(self, mq_logger):
        self._prepare_data(mq_logger)

        k = pytorchKernel.PS_torch(mq_logger)
        k._debug_less_data = True
        k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE)
        # k.load_state_data_only(KernelRunningState.PREPARE_DATA_DONE)
        # k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE,
        # dump_flag=True)  # will also analyze data
        k.data_loader.dataset._test_(1)
        k.data_loader.dataset._test_(2)  # test should choose small idx, as
        # batch might be small
        # k.run()  # dump not working for torch
        assert k is not None
Example #8
0
    def test_pytorch_starter_load_then_submit(self, mq_logger):
        kernel_load_back = pytorchKernel.PS_torch(mq_logger)

        kernel_load_back.load_state_data_only(KernelRunningState.TRAINING_DONE)
        kernel_load_back.load_model_weight()
        kernel_load_back.run()
Example #9
0
 def _pytorch_starter_dump(self, mq_logger):
     k = pytorchKernel.PS_torch(mq_logger)
     k.run(end_stage=KernelRunningState.PREPARE_DATA_DONE,
           dump_flag=True)  # will also analyze data