Example #1
0
 def segmentation(num_classes, ignore_idx=255, attach_to=None):
     confusion_matrix = metrics.ConfusionMatrix(num_classes=num_classes,
                                                ignore_idx=ignore_idx,
                                                attach_to=attach_to)
     return metrics.MetricCompose(
         metric_dict={
             'acc': metrics.Accuracy(attach_to=attach_to),
             'confusion_matrix': confusion_matrix,
             'miou': metrics.mIoU(confusion_matrix)
         })
Example #2
0
 def monocular_depth(attach_to=None):
     return metrics.MetricCompose(
         metric_dict={
             'rmse':
             metrics.RootMeanSquaredError(attach_to=attach_to),
             'rmse_log':
             metrics.RootMeanSquaredError(log_scale=True,
                                          attach_to=attach_to),
             'rmse_scale_inv':
             metrics.ScaleInveriantMeanSquaredError(attach_to=attach_to),
             'abs rel':
             metrics.AbsoluteRelativeDifference(attach_to=attach_to),
             'sq rel':
             metrics.SquaredRelativeDifference(attach_to=attach_to),
             'percents within thresholds':
             metrics.Threshold(thresholds=[1.25, 1.25**2, 1.25**3],
                               attach_to=attach_to)
         })
Example #3
0
 def loss_metric(loss_fn):
     return metrics.MetricCompose(
         metric_dict={'loss': metrics.AverageMetric(loss_fn)})
Example #4
0
 def regression(attach_to=None):
     return metrics.MetricCompose(
         metric_dict={'mse': metrics.MeanSquaredError(attach_to=attach_to)})
Example #5
0
 def classification(attach_to=None):
     return metrics.MetricCompose(
         metric_dict={'acc': metrics.Accuracy(attach_to=attach_to)})