Example #1
0
def colmap_build_map_from_loaded_data(kapture_data: kapture.Kapture,
                                      kapture_path: str,
                                      colmap_path: str,
                                      colmap_binary: str,
                                      pairsfile_path: Optional[str],
                                      use_colmap_matches_importer: bool,
                                      point_triangulator_options: List[str],
                                      skip_list: List[str],
                                      force: bool) -> None:
    """
    Build a colmap model using custom features with the kapture data.

    :param kapture_data: kapture data to use
    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param colmap_binary: path to the colmap executable
    :param pairsfile_path: Optional[str],
    :param use_colmap_matches_importer: bool,
    :param point_triangulator_options: options for the point triangulator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches):
        raise ValueError('records_camera, sensors, keypoints, matches are mandatory')
    if not kapture_data.trajectories:
        logger.info('there are no trajectories, running mapper instead of point_triangulator')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    priors_txt_path = path.join(colmap_path, "priors_for_reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_any_path(reconstruction_path, force)
        safe_remove_any_path(priors_txt_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    if 'colmap_db' not in skip_list:
        logger.info('Using precomputed keypoints and matches')
        logger.info('Step 1: Export kapture format to colmap')

        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        if kapture_data.descriptors is not None:
            kapture_data.descriptors.clear()
        database_extra.kapture_to_colmap(kapture_data, kapture_path, colmap_db,
                                         export_two_view_geometry=not use_colmap_matches_importer)
        # close db before running colmap processes in order to avoid locks
        colmap_db.close()

        if use_colmap_matches_importer:
            logger.info('Step 2: Run geometric verification')
            logger.debug('running colmap matches_importer...')
            colmap_lib.run_matches_importer_from_kapture(
                colmap_binary,
                colmap_use_cpu=True,
                colmap_gpu_index=None,
                colmap_db_path=colmap_db_path,
                kapture_data=kapture_data,
                force=force
            )
        else:
            logger.info('Step 2: Run geometric verification - skipped')

    if kapture_data.trajectories is not None:
        # Generate priors for reconstruction
        os.makedirs(priors_txt_path, exist_ok=True)
        if 'priors_for_reconstruction' not in skip_list:
            logger.info('Step 3: Exporting priors for reconstruction.')
            colmap_db = COLMAPDatabase.connect(colmap_db_path)
            database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, priors_txt_path)
            colmap_db.close()

        # Point triangulator
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 4: Triangulation")
            colmap_lib.run_point_triangulator(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                priors_txt_path,
                reconstruction_path,
                point_triangulator_options
            )
    else:
        # mapper
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 4: Triangulation")
            colmap_lib.run_mapper(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                None,
                reconstruction_path,
                point_triangulator_options
            )
            # use reconstruction 0 as main
            first_reconstruction = os.path.join(reconstruction_path, '0')
            files = os.listdir(first_reconstruction)
            for f in files:
                shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f))
            shutil.rmtree(first_reconstruction)

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 5: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
Example #2
0
def colmap_localize_sift(kapture_path: str,
                         colmap_path: str,
                         input_database_path: str,
                         input_reconstruction_path: str,
                         colmap_binary: str,
                         colmap_use_cpu: bool,
                         colmap_gpu_index: str,
                         vocab_tree_path: str,
                         image_registrator_options: List[str],
                         skip_list: List[str],
                         force: bool) -> None:
    """
    Localize images on a colmap model using default SIFT features with the kapture data.

    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param input_database_path: path to the map colmap.db
    :param input_database_path: path to the map colmap.db
    :param input_reconstruction_path: path to the map reconstruction folder
    :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu
    :param colmap_gpu_index: gpu index for sift extractor and mapper
    :param vocab_tree_path: path to the colmap vocabulary tree file
    :param image_registrator_options: options for the image registrator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)
    # Set fixed name for COLMAP database

    # Load input files first to make sure it is OK
    logger.info('loading kapture files...')
    kapture_data = kapture.io.csv.kapture_from_dir(kapture_path)

    if not (kapture_data.records_camera and kapture_data.sensors):
        raise ValueError('records_camera, sensors are mandatory')

    if kapture_data.trajectories:
        logger.warning("Input data contains trajectories: they will be ignored")
        kapture_data.trajectories.clear()
    else:
        kapture_data.trajectories = kapture.Trajectories()

    if not os.path.isfile(vocab_tree_path):
        raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Prepare output
    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    # Copy colmap db to output
    if not os.path.exists(colmap_db_path):
        shutil.copy(input_database_path, colmap_db_path)

    # find correspondences between the colmap db and the kapture data
    images_all = {image_path: (ts, cam_id)
                  for ts, shot in kapture_data.records_camera.items()
                  for cam_id, image_path in shot.items()}

    colmap_db = COLMAPDatabase.connect(colmap_db_path)
    colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db)
    colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db)
    colmap_images = database_extra.get_images_from_database(colmap_db)
    colmap_db.close()

    # dict ( kapture_camera -> colmap_camera_id )
    colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id
                         for image_path, colmap_cam_id in colmap_images if image_path in images_all}

    images_to_add = {image_path: value
                     for image_path, value in images_all.items()
                     if image_path not in colmap_image_ids}

    flatten_images_to_add = [(ts, kapture_cam_id, image_path)
                             for image_path, (ts, kapture_cam_id) in images_to_add.items()]

    if 'feature_extract' not in skip_list:
        logger.info("Step 1: Feature extraction using colmap")
        with open(image_list_path, 'w') as fid:
            for image in images_to_add.keys():
                fid.write(image + "\n")

        colmap_lib.run_feature_extractor(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            get_image_fullpath(kapture_path),
            image_list_path
        )

    if 'matches' not in skip_list:
        logger.info("Step 2: Compute matches with colmap")
        colmap_lib.run_vocab_tree_matcher(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            vocab_tree_path,
            image_list_path
        )

    if 'fix_db_cameras' not in skip_list:
        logger.info("Step 3: Replace colmap generated cameras with kapture cameras")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.foreign_keys_off(colmap_db)

        # remove colmap generated cameras
        after_feature_extraction_colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db)
        colmap_cameras_to_remove = [cam_id
                                    for cam_id in after_feature_extraction_colmap_cameras
                                    if cam_id not in colmap_cameras]
        for cam_id in colmap_cameras_to_remove:
            database_extra.remove_camera(colmap_db, cam_id)

        # put the correct cameras and image extrinsic back into the database
        cameras_to_add = kapture.Sensors()
        for image_path, (ts, kapture_cam_id) in images_to_add.items():
            if kapture_cam_id not in colmap_camera_ids:
                kapture_cam = kapture_data.sensors[kapture_cam_id]
                cameras_to_add[kapture_cam_id] = kapture_cam
        colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db)
        colmap_camera_ids.update(colmap_added_camera_ids)

        database_extra.update_images_in_database_from_flatten(
            colmap_db,
            flatten_images_to_add,
            kapture_data.trajectories,
            colmap_camera_ids
        )

        database_extra.foreign_keys_on(colmap_db)
        colmap_db.commit()
        colmap_db.close()

    if 'image_registrator' not in skip_list:
        logger.info("Step 4: Run image_registrator")
        # run image_registrator
        colmap_lib.run_image_registrator(
            colmap_binary,
            colmap_db_path,
            input_reconstruction_path,
            reconstruction_path,
            image_registrator_options
        )

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 5: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
Example #3
0
def colmap_build_sift_map(kapture_path: str,
                          colmap_path: str,
                          colmap_binary: str,
                          colmap_use_cpu: bool,
                          colmap_gpu_index: str,
                          vocab_tree_path: str,
                          point_triangulator_options: List[str],
                          skip_list: List[str],
                          force: bool) -> None:
    """
    Build a colmap model using default SIFT features with the kapture data.

    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param colmap_binary: path to the colmap executable
    :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu
    :param colmap_gpu_index: gpu index for sift extractor and mapper
    :param vocab_tree_path: path to the colmap vocabulary tree file
    :param point_triangulator_options: options for the point triangulator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    # Load input files first to make sure it is OK
    logger.info('loading kapture files...')
    kapture_data = kapture.io.csv.kapture_from_dir(kapture_path)

    if not (kapture_data.records_camera and kapture_data.sensors):
        raise ValueError('records_camera, sensors are mandatory')
    if not kapture_data.trajectories:
        logger.info('there are no trajectories, running mapper instead of point_triangulator')

    if not os.path.isfile(vocab_tree_path):
        raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    if 'feature_extract' not in skip_list:
        logger.info("Step 1: Feature extraction using colmap")
        with open(image_list_path, 'w') as fid:
            for timestamp, sensor_id in sorted(kapture_data.records_camera.key_pairs()):
                fid.write(kapture_data.records_camera[timestamp][sensor_id] + "\n")

        colmap_lib.run_feature_extractor(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            get_image_fullpath(kapture_path),
            image_list_path
        )

    # Update cameras in COLMAP:
    # - use only one camera for all images taken with the same camera (update all camera IDs)
    # - import camera intrinsics
    # - import camera pose
    if 'update_db_cameras' not in skip_list:
        logger.info("Step 2: Populate COLMAP DB with cameras and poses")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.update_DB_cameras_and_poses(colmap_db, kapture_data)
        # close db before running colmap processes in order to avoid locks
        colmap_db.close()

    # Extract matches with COLMAP
    if 'matches' not in skip_list:
        logger.info("Step 3: Compute matches with colmap")

        colmap_lib.run_vocab_tree_matcher(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            vocab_tree_path)

    if kapture_data.trajectories is not None:
        # Generate priors for reconstruction
        txt_path = path.join(colmap_path, "priors_for_reconstruction")
        os.makedirs(txt_path, exist_ok=True)
        if 'priors_for_reconstruction' not in skip_list:
            logger.info('Step 4: Exporting priors for reconstruction.')
            colmap_db = COLMAPDatabase.connect(colmap_db_path)
            database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, txt_path)
            colmap_db.close()

        # Point triangulator
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 5: Triangulation")
            colmap_lib.run_point_triangulator(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                txt_path,
                reconstruction_path,
                point_triangulator_options
            )
    else:
        # mapper
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 5: Triangulation")
            colmap_lib.run_mapper(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                None,
                reconstruction_path,
                point_triangulator_options
            )
            # use reconstruction 0 as main
            first_reconstruction = os.path.join(reconstruction_path, '0')
            files = os.listdir(first_reconstruction)
            for f in files:
                shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f))
            shutil.rmtree(first_reconstruction)

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 6: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
Example #4
0
def colmap_localize_from_loaded_data(kapture_data: kapture.Kapture,
                                     kapture_path: str, colmap_path: str,
                                     input_database_path: str,
                                     input_reconstruction_path: str,
                                     colmap_binary: str,
                                     pairsfile_path: Optional[str],
                                     use_colmap_matches_importer: bool,
                                     image_registrator_options: List[str],
                                     skip_list: List[str],
                                     force: bool) -> None:
    """
    Localize images on a colmap model using default SIFT features with the kapture data.

    :param kapture_data: kapture data to use
    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param input_database_path: path to the map colmap.db
    :param input_database_path: path to the map colmap.db
    :param input_reconstruction_path: path to the map reconstruction folder
    :param pairsfile_path: Optional[str],
    :param use_colmap_matches_importer: bool,
    :param image_registrator_options: options for the image registrator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    if not (kapture_data.records_camera and kapture_data.sensors
            and kapture_data.keypoints and kapture_data.matches):
        raise ValueError(
            'records_camera, sensors, keypoints, matches are mandatory')

    if kapture_data.trajectories:
        logger.warning(
            "Input data contains trajectories: they will be ignored")
        kapture_data.trajectories.clear()
    else:
        kapture_data.trajectories = kapture.Trajectories()

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Prepare output
    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    # Copy colmap db to output
    if not os.path.exists(colmap_db_path):
        shutil.copy(input_database_path, colmap_db_path)

    # find correspondences between the colmap db and the kapture data
    images_all = {
        image_path: (ts, cam_id)
        for ts, shot in kapture_data.records_camera.items()
        for cam_id, image_path in shot.items()
    }

    colmap_db = COLMAPDatabase.connect(colmap_db_path)
    colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db)
    colmap_images = database_extra.get_images_from_database(colmap_db)
    colmap_db.close()

    # dict ( kapture_camera -> colmap_camera_id )
    colmap_camera_ids = {
        images_all[image_path][1]: colmap_cam_id
        for image_path, colmap_cam_id in colmap_images
        if image_path in images_all
    }

    images_to_add = {
        image_path: value
        for image_path, value in images_all.items()
        if image_path not in colmap_image_ids
    }

    flatten_images_to_add = [
        (ts, kapture_cam_id, image_path)
        for image_path, (ts, kapture_cam_id) in images_to_add.items()
    ]

    if 'import_to_db' not in skip_list:
        logger.info(
            "Step 1: Add precomputed keypoints and matches to colmap db")
        cameras_to_add = kapture.Sensors()
        for _, (_, kapture_cam_id) in images_to_add.items():
            if kapture_cam_id not in colmap_camera_ids:
                kapture_cam = kapture_data.sensors[kapture_cam_id]
                cameras_to_add[kapture_cam_id] = kapture_cam
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        colmap_added_camera_ids = database_extra.add_cameras_to_database(
            cameras_to_add, colmap_db)
        colmap_camera_ids.update(colmap_added_camera_ids)

        colmap_added_image_ids = database_extra.add_images_to_database_from_flatten(
            colmap_db, flatten_images_to_add, kapture_data.trajectories,
            colmap_camera_ids)
        colmap_image_ids.update(colmap_added_image_ids)

        colmap_image_ids_reversed = {
            v: k
            for k, v in colmap_image_ids.items()
        }  # colmap_id : name

        # add new features
        colmap_keypoints = database_extra.get_keypoints_set_from_database(
            colmap_db, colmap_image_ids_reversed)

        keypoints_all = kapture_data.keypoints
        keypoints_to_add = {
            name
            for name in keypoints_all if name not in colmap_keypoints
        }
        keypoints_to_add = kapture.Keypoints(keypoints_all.type_name,
                                             keypoints_all.dtype,
                                             keypoints_all.dsize,
                                             keypoints_to_add)
        database_extra.add_keypoints_to_database(colmap_db, keypoints_to_add,
                                                 kapture_path,
                                                 colmap_image_ids)

        # add new matches
        colmap_matches = kapture.Matches(
            database_extra.get_matches_set_from_database(
                colmap_db, colmap_image_ids_reversed))
        colmap_matches.normalize()

        matches_all = kapture_data.matches
        matches_to_add = kapture.Matches(
            {pair
             for pair in matches_all if pair not in colmap_matches})
        # print(list(matches_to_add))
        database_extra.add_matches_to_database(
            colmap_db,
            matches_to_add,
            kapture_path,
            colmap_image_ids,
            export_two_view_geometry=not use_colmap_matches_importer)
        colmap_db.close()

    if use_colmap_matches_importer:
        logger.info('Step 2: Run geometric verification')
        logger.debug('running colmap matches_importer...')
        # compute two view geometry
        colmap_lib.run_matches_importer_from_kapture(
            colmap_binary,
            colmap_use_cpu=True,
            colmap_gpu_index=None,
            colmap_db_path=colmap_db_path,
            kapture_data=kapture_data,
            force=force)
    else:
        logger.info('Step 2: Run geometric verification - skipped')
    if 'image_registrator' not in skip_list:
        logger.info("Step 3: Run image_registrator")
        # run image_registrator
        colmap_lib.run_image_registrator(colmap_binary, colmap_db_path,
                                         input_reconstruction_path,
                                         reconstruction_path,
                                         image_registrator_options)

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 4: Export reconstruction results to txt")
        colmap_lib.run_model_converter(colmap_binary, reconstruction_path,
                                       reconstruction_path)