Example #1
0
 def test_exists_table(self) -> None:
     with tempfile.TemporaryDirectory() as tmpdirname:
         colmap_db_path = path.join(tmpdirname, 'colmap.db')
         colmap_db = COLMAPDatabase.connect(colmap_db_path)
         self.assertFalse(exists_table('two_view_geometries', colmap_db))
         colmap_db.create_tables()
         self.assertTrue(exists_table('two_view_geometries', colmap_db))
         colmap_db.close()
Example #2
0
def colmap_build_map_from_loaded_data(kapture_data: kapture.Kapture,
                                      kapture_path: str,
                                      colmap_path: str,
                                      colmap_binary: str,
                                      pairsfile_path: Optional[str],
                                      use_colmap_matches_importer: bool,
                                      point_triangulator_options: List[str],
                                      skip_list: List[str],
                                      force: bool) -> None:
    """
    Build a colmap model using custom features with the kapture data.

    :param kapture_data: kapture data to use
    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param colmap_binary: path to the colmap executable
    :param pairsfile_path: Optional[str],
    :param use_colmap_matches_importer: bool,
    :param point_triangulator_options: options for the point triangulator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches):
        raise ValueError('records_camera, sensors, keypoints, matches are mandatory')
    if not kapture_data.trajectories:
        logger.info('there are no trajectories, running mapper instead of point_triangulator')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    priors_txt_path = path.join(colmap_path, "priors_for_reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_any_path(reconstruction_path, force)
        safe_remove_any_path(priors_txt_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    if 'colmap_db' not in skip_list:
        logger.info('Using precomputed keypoints and matches')
        logger.info('Step 1: Export kapture format to colmap')

        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        if kapture_data.descriptors is not None:
            kapture_data.descriptors.clear()
        database_extra.kapture_to_colmap(kapture_data, kapture_path, colmap_db,
                                         export_two_view_geometry=not use_colmap_matches_importer)
        # close db before running colmap processes in order to avoid locks
        colmap_db.close()

        if use_colmap_matches_importer:
            logger.info('Step 2: Run geometric verification')
            logger.debug('running colmap matches_importer...')
            colmap_lib.run_matches_importer_from_kapture(
                colmap_binary,
                colmap_use_cpu=True,
                colmap_gpu_index=None,
                colmap_db_path=colmap_db_path,
                kapture_data=kapture_data,
                force=force
            )
        else:
            logger.info('Step 2: Run geometric verification - skipped')

    if kapture_data.trajectories is not None:
        # Generate priors for reconstruction
        os.makedirs(priors_txt_path, exist_ok=True)
        if 'priors_for_reconstruction' not in skip_list:
            logger.info('Step 3: Exporting priors for reconstruction.')
            colmap_db = COLMAPDatabase.connect(colmap_db_path)
            database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, priors_txt_path)
            colmap_db.close()

        # Point triangulator
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 4: Triangulation")
            colmap_lib.run_point_triangulator(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                priors_txt_path,
                reconstruction_path,
                point_triangulator_options
            )
    else:
        # mapper
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 4: Triangulation")
            colmap_lib.run_mapper(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                None,
                reconstruction_path,
                point_triangulator_options
            )
            # use reconstruction 0 as main
            first_reconstruction = os.path.join(reconstruction_path, '0')
            files = os.listdir(first_reconstruction)
            for f in files:
                shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f))
            shutil.rmtree(first_reconstruction)

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 5: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
Example #3
0
def colmap_localize_from_loaded_data(kapture_data: kapture.Kapture,
                                     kapture_path: str,
                                     tar_handlers: Optional[TarCollection],
                                     colmap_path: str,
                                     input_database_path: str,
                                     input_reconstruction_path: str,
                                     colmap_binary: str,
                                     keypoints_type: Optional[str],
                                     use_colmap_matches_importer: bool,
                                     image_registrator_options: List[str],
                                     skip_list: List[str],
                                     force: bool) -> None:
    """
    Localize images on a colmap model with the kapture data.

    :param kapture_data: kapture data to use
    :param kapture_path: path to the kapture to use
    :param tar_handler: collection of preloaded tar archives
    :param colmap_path: path to the colmap build
    :param input_database_path: path to the map colmap.db
    :param input_database_path: path to the map colmap.db
    :param input_reconstruction_path: path to the map reconstruction folder
    :param colmap_binary: path to the colmap binary executable
    :param keypoints_type: type of keypoints, name of the keypoints subfolder
    :param use_colmap_matches_importer: bool,
    :param image_registrator_options: options for the image registrator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches):
        raise ValueError('records_camera, sensors, keypoints, matches are mandatory')

    if kapture_data.trajectories:
        logger.warning("Input data contains trajectories: they will be ignored")
        kapture_data.trajectories.clear()
    else:
        kapture_data.trajectories = kapture.Trajectories()

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Prepare output
    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    # Copy colmap db to output
    if not os.path.exists(colmap_db_path):
        shutil.copy(input_database_path, colmap_db_path)

    # find correspondences between the colmap db and the kapture data
    images_all = {image_path: (ts, cam_id)
                  for ts, shot in kapture_data.records_camera.items()
                  for cam_id, image_path in shot.items()}

    colmap_db = COLMAPDatabase.connect(colmap_db_path)
    colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db)
    colmap_images = database_extra.get_images_from_database(colmap_db)
    colmap_db.close()

    # dict ( kapture_camera -> colmap_camera_id )
    colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id
                         for image_path, colmap_cam_id in colmap_images if image_path in images_all}

    images_to_add = {image_path: value
                     for image_path, value in images_all.items()
                     if image_path not in colmap_image_ids}

    flatten_images_to_add = [(ts, kapture_cam_id, image_path)
                             for image_path, (ts, kapture_cam_id) in images_to_add.items()]

    if 'import_to_db' not in skip_list:
        logger.info("Step 1: Add precomputed keypoints and matches to colmap db")

        if keypoints_type is None:
            keypoints_type = try_get_only_key_from_collection(kapture_data.keypoints)
        assert keypoints_type is not None
        assert keypoints_type in kapture_data.keypoints
        assert keypoints_type in kapture_data.matches

        cameras_to_add = kapture.Sensors()
        for _, (_, kapture_cam_id) in images_to_add.items():
            if kapture_cam_id not in colmap_camera_ids:
                kapture_cam = kapture_data.sensors[kapture_cam_id]
                cameras_to_add[kapture_cam_id] = kapture_cam
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db)
        colmap_camera_ids.update(colmap_added_camera_ids)

        colmap_added_image_ids = database_extra.add_images_to_database_from_flatten(
            colmap_db, flatten_images_to_add, kapture_data.trajectories, colmap_camera_ids)
        colmap_image_ids.update(colmap_added_image_ids)

        colmap_image_ids_reversed = {v: k for k, v in colmap_image_ids.items()}  # colmap_id : name

        # add new features
        colmap_keypoints = database_extra.get_keypoints_set_from_database(colmap_db, colmap_image_ids_reversed)

        keypoints_all = kapture_data.keypoints[keypoints_type]
        keypoints_to_add = {name for name in keypoints_all if name not in colmap_keypoints}
        keypoints_to_add = kapture.Keypoints(keypoints_all.type_name, keypoints_all.dtype, keypoints_all.dsize,
                                             keypoints_to_add)
        database_extra.add_keypoints_to_database(colmap_db, keypoints_to_add,
                                                 keypoints_type, kapture_path,
                                                 tar_handlers,
                                                 colmap_image_ids)

        # add new matches
        colmap_matches = kapture.Matches(database_extra.get_matches_set_from_database(colmap_db,
                                                                                      colmap_image_ids_reversed))
        colmap_matches.normalize()

        matches_all = kapture_data.matches[keypoints_type]
        matches_to_add = kapture.Matches({pair for pair in matches_all if pair not in colmap_matches})
        # print(list(matches_to_add))
        database_extra.add_matches_to_database(colmap_db, matches_to_add,
                                               keypoints_type, kapture_path,
                                               tar_handlers,
                                               colmap_image_ids,
                                               export_two_view_geometry=not use_colmap_matches_importer)
        colmap_db.close()

    if use_colmap_matches_importer:
        logger.info('Step 2: Run geometric verification')
        logger.debug('running colmap matches_importer...')

        if keypoints_type is None:
            keypoints_type = try_get_only_key_from_collection(kapture_data.matches)
        assert keypoints_type is not None
        assert keypoints_type in kapture_data.matches

        # compute two view geometry
        colmap_lib.run_matches_importer_from_kapture_matches(
            colmap_binary,
            colmap_use_cpu=True,
            colmap_gpu_index=None,
            colmap_db_path=colmap_db_path,
            kapture_matches=kapture_data.matches[keypoints_type],
            force=force)
    else:
        logger.info('Step 2: Run geometric verification - skipped')
    if 'image_registrator' not in skip_list:
        logger.info("Step 3: Run image_registrator")
        # run image_registrator
        colmap_lib.run_image_registrator(
            colmap_binary,
            colmap_db_path,
            input_reconstruction_path,
            reconstruction_path,
            image_registrator_options
        )

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 4: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
def run_colmap_gv_from_loaded_data(kapture_none_matches: kapture.Kapture,
                                   kapture_colmap_matches: kapture.Kapture,
                                   kapture_none_matches_dirpath: str,
                                   kapture_colmap_matches_dirpath: str,
                                   tar_handlers_none_matches: Optional[TarCollection],
                                   tar_handlers_colmap_matches: Optional[TarCollection],
                                   colmap_binary: str,
                                   keypoints_type: Optional[str],
                                   skip_list: List[str],
                                   force: bool):
    logger.info('run_colmap_gv...')
    if not (kapture_none_matches.records_camera and kapture_none_matches.sensors and
            kapture_none_matches.keypoints and kapture_none_matches.matches):
        raise ValueError('records_camera, sensors, keypoints, matches are mandatory')

    # COLMAP does not fully support rigs.
    if kapture_none_matches.rigs is not None and kapture_none_matches.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_none_matches.trajectories, kapture_none_matches.rigs)

    # Set fixed name for COLMAP database
    colmap_db_path = os.path.join(kapture_colmap_matches_dirpath, 'colmap.db')
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)

    if keypoints_type is None:
        keypoints_type = try_get_only_key_from_collection(kapture_none_matches.matches)
    assert keypoints_type is not None
    assert keypoints_type in kapture_none_matches.keypoints
    assert keypoints_type in kapture_none_matches.matches

    if 'matches_importer' not in skip_list:
        logger.debug('compute matches difference.')
        if kapture_colmap_matches.matches is not None and keypoints_type in kapture_colmap_matches.matches:
            colmap_matches = kapture_colmap_matches.matches[keypoints_type]
        else:
            colmap_matches = kapture.Matches()
        matches_to_verify = kapture.Matches(kapture_none_matches.matches[keypoints_type].difference(colmap_matches))
        kapture_data_to_export = kapture.Kapture(sensors=kapture_none_matches.sensors,
                                                 trajectories=kapture_none_matches.trajectories,
                                                 records_camera=kapture_none_matches.records_camera,
                                                 keypoints={
                                                     keypoints_type: kapture_none_matches.keypoints[keypoints_type]
                                                 },
                                                 matches={
                                                     keypoints_type: matches_to_verify
                                                 })
        # creates a new database with matches
        logger.debug('export matches difference to db.')
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.kapture_to_colmap(kapture_data_to_export, kapture_none_matches_dirpath,
                                         tar_handlers_none_matches,
                                         colmap_db,
                                         keypoints_type,
                                         None,
                                         export_two_view_geometry=False)
        # close db before running colmap processes in order to avoid locks
        colmap_db.close()

        logger.debug('run matches_importer command.')
        colmap_lib.run_matches_importer_from_kapture_matches(
            colmap_binary,
            colmap_use_cpu=True,
            colmap_gpu_index=None,
            colmap_db_path=colmap_db_path,
            kapture_matches=matches_to_verify,
            force=force
        )

    if 'import' not in skip_list:
        logger.debug('import verified matches.')
        os.umask(0o002)
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        kapture_data = kapture.Kapture()
        kapture_data.records_camera, _ = get_images_and_trajectories_from_database(colmap_db)
        kapture_data.matches = {
            keypoints_type: get_matches_from_database(colmap_db, kapture_data.records_camera,
                                                      kapture_colmap_matches_dirpath,
                                                      tar_handlers_colmap_matches,
                                                      keypoints_type,
                                                      no_geometric_filtering=False)
        }
        colmap_db.close()

        if kapture_colmap_matches.matches is None:
            kapture_colmap_matches.matches = {}
        if keypoints_type not in kapture_colmap_matches.matches:
            kapture_colmap_matches.matches[keypoints_type] = kapture.Matches()
        kapture_colmap_matches.matches[keypoints_type].update(kapture_data.matches[keypoints_type])

    if 'delete_db' not in skip_list:
        logger.debug('delete intermediate colmap db.')
        os.remove(colmap_db_path)
Example #5
0
def colmap_build_sift_map(kapture_path: str,
                          colmap_path: str,
                          colmap_binary: str,
                          colmap_use_cpu: bool,
                          colmap_gpu_index: str,
                          vocab_tree_path: str,
                          point_triangulator_options: List[str],
                          skip_list: List[str],
                          force: bool) -> None:
    """
    Build a colmap model using default SIFT features with the kapture data.

    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param colmap_binary: path to the colmap executable
    :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu
    :param colmap_gpu_index: gpu index for sift extractor and mapper
    :param vocab_tree_path: path to the colmap vocabulary tree file
    :param point_triangulator_options: options for the point triangulator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)

    # Load input files first to make sure it is OK
    logger.info('loading kapture files...')
    kapture_data = kapture.io.csv.kapture_from_dir(kapture_path)

    if not (kapture_data.records_camera and kapture_data.sensors):
        raise ValueError('records_camera, sensors are mandatory')
    if not kapture_data.trajectories:
        logger.info('there are no trajectories, running mapper instead of point_triangulator')

    if not os.path.isfile(vocab_tree_path):
        raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    if 'feature_extract' not in skip_list:
        logger.info("Step 1: Feature extraction using colmap")
        with open(image_list_path, 'w') as fid:
            for timestamp, sensor_id in sorted(kapture_data.records_camera.key_pairs()):
                fid.write(kapture_data.records_camera[timestamp][sensor_id] + "\n")

        colmap_lib.run_feature_extractor(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            get_image_fullpath(kapture_path),
            image_list_path
        )

    # Update cameras in COLMAP:
    # - use only one camera for all images taken with the same camera (update all camera IDs)
    # - import camera intrinsics
    # - import camera pose
    if 'update_db_cameras' not in skip_list:
        logger.info("Step 2: Populate COLMAP DB with cameras and poses")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.update_DB_cameras_and_poses(colmap_db, kapture_data)
        # close db before running colmap processes in order to avoid locks
        colmap_db.close()

    # Extract matches with COLMAP
    if 'matches' not in skip_list:
        logger.info("Step 3: Compute matches with colmap")

        colmap_lib.run_vocab_tree_matcher(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            vocab_tree_path)

    if kapture_data.trajectories is not None:
        # Generate priors for reconstruction
        txt_path = path.join(colmap_path, "priors_for_reconstruction")
        os.makedirs(txt_path, exist_ok=True)
        if 'priors_for_reconstruction' not in skip_list:
            logger.info('Step 4: Exporting priors for reconstruction.')
            colmap_db = COLMAPDatabase.connect(colmap_db_path)
            database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, txt_path)
            colmap_db.close()

        # Point triangulator
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 5: Triangulation")
            colmap_lib.run_point_triangulator(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                txt_path,
                reconstruction_path,
                point_triangulator_options
            )
    else:
        # mapper
        reconstruction_path = path.join(colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        if 'triangulation' not in skip_list:
            logger.info("Step 5: Triangulation")
            colmap_lib.run_mapper(
                colmap_binary,
                colmap_db_path,
                get_image_fullpath(kapture_path),
                None,
                reconstruction_path,
                point_triangulator_options
            )
            # use reconstruction 0 as main
            first_reconstruction = os.path.join(reconstruction_path, '0')
            files = os.listdir(first_reconstruction)
            for f in files:
                shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f))
            shutil.rmtree(first_reconstruction)

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 6: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
Example #6
0
def colmap_localize_sift(kapture_path: str,
                         colmap_path: str,
                         input_database_path: str,
                         input_reconstruction_path: str,
                         colmap_binary: str,
                         colmap_use_cpu: bool,
                         colmap_gpu_index: str,
                         vocab_tree_path: str,
                         image_registrator_options: List[str],
                         skip_list: List[str],
                         force: bool) -> None:
    """
    Localize images on a colmap model using default SIFT features with the kapture data.

    :param kapture_path: path to the kapture to use
    :param colmap_path: path to the colmap build
    :param input_database_path: path to the map colmap.db
    :param input_database_path: path to the map colmap.db
    :param input_reconstruction_path: path to the map reconstruction folder
    :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu
    :param colmap_gpu_index: gpu index for sift extractor and mapper
    :param vocab_tree_path: path to the colmap vocabulary tree file
    :param image_registrator_options: options for the image registrator
    :param skip_list: list of steps to skip
    :param force: Silently overwrite kapture files if already exists.
    """
    os.makedirs(colmap_path, exist_ok=True)
    # Set fixed name for COLMAP database

    # Load input files first to make sure it is OK
    logger.info('loading kapture files...')
    kapture_data = kapture.io.csv.kapture_from_dir(kapture_path)

    if not (kapture_data.records_camera and kapture_data.sensors):
        raise ValueError('records_camera, sensors are mandatory')

    if kapture_data.trajectories:
        logger.warning("Input data contains trajectories: they will be ignored")
        kapture_data.trajectories.clear()
    else:
        kapture_data.trajectories = kapture.Trajectories()

    if not os.path.isfile(vocab_tree_path):
        raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}')

    # COLMAP does not fully support rigs.
    if kapture_data.rigs is not None and kapture_data.trajectories is not None:
        # make sure, rigs are not used in trajectories.
        logger.info('remove rigs notation.')
        rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
        kapture_data.rigs.clear()

    # Prepare output
    # Set fixed name for COLMAP database
    colmap_db_path = path.join(colmap_path, 'colmap.db')
    image_list_path = path.join(colmap_path, 'images.list')
    reconstruction_path = path.join(colmap_path, "reconstruction")
    if 'delete_existing' not in skip_list:
        safe_remove_file(colmap_db_path, force)
        safe_remove_file(image_list_path, force)
        safe_remove_any_path(reconstruction_path, force)
    os.makedirs(reconstruction_path, exist_ok=True)

    # Copy colmap db to output
    if not os.path.exists(colmap_db_path):
        shutil.copy(input_database_path, colmap_db_path)

    # find correspondences between the colmap db and the kapture data
    images_all = {image_path: (ts, cam_id)
                  for ts, shot in kapture_data.records_camera.items()
                  for cam_id, image_path in shot.items()}

    colmap_db = COLMAPDatabase.connect(colmap_db_path)
    colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db)
    colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db)
    colmap_images = database_extra.get_images_from_database(colmap_db)
    colmap_db.close()

    # dict ( kapture_camera -> colmap_camera_id )
    colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id
                         for image_path, colmap_cam_id in colmap_images if image_path in images_all}

    images_to_add = {image_path: value
                     for image_path, value in images_all.items()
                     if image_path not in colmap_image_ids}

    flatten_images_to_add = [(ts, kapture_cam_id, image_path)
                             for image_path, (ts, kapture_cam_id) in images_to_add.items()]

    if 'feature_extract' not in skip_list:
        logger.info("Step 1: Feature extraction using colmap")
        with open(image_list_path, 'w') as fid:
            for image in images_to_add.keys():
                fid.write(image + "\n")

        colmap_lib.run_feature_extractor(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            get_image_fullpath(kapture_path),
            image_list_path
        )

    if 'matches' not in skip_list:
        logger.info("Step 2: Compute matches with colmap")
        colmap_lib.run_vocab_tree_matcher(
            colmap_binary,
            colmap_use_cpu,
            colmap_gpu_index,
            colmap_db_path,
            vocab_tree_path,
            image_list_path
        )

    if 'fix_db_cameras' not in skip_list:
        logger.info("Step 3: Replace colmap generated cameras with kapture cameras")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.foreign_keys_off(colmap_db)

        # remove colmap generated cameras
        after_feature_extraction_colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db)
        colmap_cameras_to_remove = [cam_id
                                    for cam_id in after_feature_extraction_colmap_cameras
                                    if cam_id not in colmap_cameras]
        for cam_id in colmap_cameras_to_remove:
            database_extra.remove_camera(colmap_db, cam_id)

        # put the correct cameras and image extrinsic back into the database
        cameras_to_add = kapture.Sensors()
        for image_path, (ts, kapture_cam_id) in images_to_add.items():
            if kapture_cam_id not in colmap_camera_ids:
                kapture_cam = kapture_data.sensors[kapture_cam_id]
                cameras_to_add[kapture_cam_id] = kapture_cam
        colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db)
        colmap_camera_ids.update(colmap_added_camera_ids)

        database_extra.update_images_in_database_from_flatten(
            colmap_db,
            flatten_images_to_add,
            kapture_data.trajectories,
            colmap_camera_ids
        )

        database_extra.foreign_keys_on(colmap_db)
        colmap_db.commit()
        colmap_db.close()

    if 'image_registrator' not in skip_list:
        logger.info("Step 4: Run image_registrator")
        # run image_registrator
        colmap_lib.run_image_registrator(
            colmap_binary,
            colmap_db_path,
            input_reconstruction_path,
            reconstruction_path,
            image_registrator_options
        )

    # run model_converter
    if 'model_converter' not in skip_list:
        logger.info("Step 5: Export reconstruction results to txt")
        colmap_lib.run_model_converter(
            colmap_binary,
            reconstruction_path,
            reconstruction_path
        )
    def reconstruct(self, kapture_data):
        os.makedirs(self._colmap_path, exist_ok=True)

        if not (kapture_data.records_camera and kapture_data.sensors
                and kapture_data.keypoints and kapture_data.matches
                and kapture_data.trajectories):
            raise ValueError(
                'records_camera, sensors, keypoints, matches, trajectories are mandatory'
            )

        # Set fixed name for COLMAP database
        colmap_db_path = path.join(self._colmap_path, 'colmap.db')
        reconstruction_path = path.join(self._colmap_path, "reconstruction")
        priors_txt_path = path.join(self._colmap_path,
                                    "priors_for_reconstruction")

        safe_remove_file(colmap_db_path, True)
        safe_remove_any_path(reconstruction_path, True)
        safe_remove_any_path(priors_txt_path, True)
        os.makedirs(reconstruction_path, exist_ok=True)

        # COLMAP does not fully support rigs.
        print("Step 1. Remove rigs")
        if kapture_data.rigs is not None and kapture_data.trajectories is not None:
            # make sure, rigs are not used in trajectories.
            rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs)
            kapture_data.rigs.clear()

        print("Step 2. Kapture to colmap")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.kapture_to_colmap(kapture_data,
                                         kapture_data.kapture_path,
                                         colmap_db,
                                         export_two_view_geometry=True)
        colmap_db.close()

        os.makedirs(priors_txt_path, exist_ok=True)

        print("Step 3. Generate priors for reconstruction")
        colmap_db = COLMAPDatabase.connect(colmap_db_path)
        database_extra.generate_priors_for_reconstruction(
            kapture_data, colmap_db, priors_txt_path)
        colmap_db.close()

        # Point triangulator
        print("Step 4. Point triangulator")
        reconstruction_path = path.join(self._colmap_path, "reconstruction")
        os.makedirs(reconstruction_path, exist_ok=True)
        run_point_triangulator(self._colmap_binary, colmap_db_path,
                               kapture_data.image_path, priors_txt_path,
                               reconstruction_path,
                               self._point_triangulator_options)
        print("Step 5. Model converter")
        run_model_converter(self._colmap_binary, reconstruction_path,
                            reconstruction_path)
        print("Step 5. Reconstruction import")
        points3d, observations = import_from_colmap_points3d_txt(
            os.path.join(reconstruction_path, "points3D.txt"),
            kapture_data.image_names)
        kapture_data.observations = observations
        kapture_data.points3d = points3d