def test_exists_table(self) -> None: with tempfile.TemporaryDirectory() as tmpdirname: colmap_db_path = path.join(tmpdirname, 'colmap.db') colmap_db = COLMAPDatabase.connect(colmap_db_path) self.assertFalse(exists_table('two_view_geometries', colmap_db)) colmap_db.create_tables() self.assertTrue(exists_table('two_view_geometries', colmap_db)) colmap_db.close()
def colmap_build_map_from_loaded_data(kapture_data: kapture.Kapture, kapture_path: str, colmap_path: str, colmap_binary: str, pairsfile_path: Optional[str], use_colmap_matches_importer: bool, point_triangulator_options: List[str], skip_list: List[str], force: bool) -> None: """ Build a colmap model using custom features with the kapture data. :param kapture_data: kapture data to use :param kapture_path: path to the kapture to use :param colmap_path: path to the colmap build :param colmap_binary: path to the colmap executable :param pairsfile_path: Optional[str], :param use_colmap_matches_importer: bool, :param point_triangulator_options: options for the point triangulator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ os.makedirs(colmap_path, exist_ok=True) if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches): raise ValueError('records_camera, sensors, keypoints, matches are mandatory') if not kapture_data.trajectories: logger.info('there are no trajectories, running mapper instead of point_triangulator') # COLMAP does not fully support rigs. if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() # Set fixed name for COLMAP database colmap_db_path = path.join(colmap_path, 'colmap.db') reconstruction_path = path.join(colmap_path, "reconstruction") priors_txt_path = path.join(colmap_path, "priors_for_reconstruction") if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) safe_remove_any_path(reconstruction_path, force) safe_remove_any_path(priors_txt_path, force) os.makedirs(reconstruction_path, exist_ok=True) if 'colmap_db' not in skip_list: logger.info('Using precomputed keypoints and matches') logger.info('Step 1: Export kapture format to colmap') colmap_db = COLMAPDatabase.connect(colmap_db_path) if kapture_data.descriptors is not None: kapture_data.descriptors.clear() database_extra.kapture_to_colmap(kapture_data, kapture_path, colmap_db, export_two_view_geometry=not use_colmap_matches_importer) # close db before running colmap processes in order to avoid locks colmap_db.close() if use_colmap_matches_importer: logger.info('Step 2: Run geometric verification') logger.debug('running colmap matches_importer...') colmap_lib.run_matches_importer_from_kapture( colmap_binary, colmap_use_cpu=True, colmap_gpu_index=None, colmap_db_path=colmap_db_path, kapture_data=kapture_data, force=force ) else: logger.info('Step 2: Run geometric verification - skipped') if kapture_data.trajectories is not None: # Generate priors for reconstruction os.makedirs(priors_txt_path, exist_ok=True) if 'priors_for_reconstruction' not in skip_list: logger.info('Step 3: Exporting priors for reconstruction.') colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, priors_txt_path) colmap_db.close() # Point triangulator reconstruction_path = path.join(colmap_path, "reconstruction") os.makedirs(reconstruction_path, exist_ok=True) if 'triangulation' not in skip_list: logger.info("Step 4: Triangulation") colmap_lib.run_point_triangulator( colmap_binary, colmap_db_path, get_image_fullpath(kapture_path), priors_txt_path, reconstruction_path, point_triangulator_options ) else: # mapper reconstruction_path = path.join(colmap_path, "reconstruction") os.makedirs(reconstruction_path, exist_ok=True) if 'triangulation' not in skip_list: logger.info("Step 4: Triangulation") colmap_lib.run_mapper( colmap_binary, colmap_db_path, get_image_fullpath(kapture_path), None, reconstruction_path, point_triangulator_options ) # use reconstruction 0 as main first_reconstruction = os.path.join(reconstruction_path, '0') files = os.listdir(first_reconstruction) for f in files: shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f)) shutil.rmtree(first_reconstruction) # run model_converter if 'model_converter' not in skip_list: logger.info("Step 5: Export reconstruction results to txt") colmap_lib.run_model_converter( colmap_binary, reconstruction_path, reconstruction_path )
def colmap_localize_from_loaded_data(kapture_data: kapture.Kapture, kapture_path: str, tar_handlers: Optional[TarCollection], colmap_path: str, input_database_path: str, input_reconstruction_path: str, colmap_binary: str, keypoints_type: Optional[str], use_colmap_matches_importer: bool, image_registrator_options: List[str], skip_list: List[str], force: bool) -> None: """ Localize images on a colmap model with the kapture data. :param kapture_data: kapture data to use :param kapture_path: path to the kapture to use :param tar_handler: collection of preloaded tar archives :param colmap_path: path to the colmap build :param input_database_path: path to the map colmap.db :param input_database_path: path to the map colmap.db :param input_reconstruction_path: path to the map reconstruction folder :param colmap_binary: path to the colmap binary executable :param keypoints_type: type of keypoints, name of the keypoints subfolder :param use_colmap_matches_importer: bool, :param image_registrator_options: options for the image registrator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ os.makedirs(colmap_path, exist_ok=True) if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches): raise ValueError('records_camera, sensors, keypoints, matches are mandatory') if kapture_data.trajectories: logger.warning("Input data contains trajectories: they will be ignored") kapture_data.trajectories.clear() else: kapture_data.trajectories = kapture.Trajectories() # COLMAP does not fully support rigs. if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() # Prepare output # Set fixed name for COLMAP database colmap_db_path = path.join(colmap_path, 'colmap.db') image_list_path = path.join(colmap_path, 'images.list') reconstruction_path = path.join(colmap_path, "reconstruction") if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) safe_remove_file(image_list_path, force) safe_remove_any_path(reconstruction_path, force) os.makedirs(reconstruction_path, exist_ok=True) # Copy colmap db to output if not os.path.exists(colmap_db_path): shutil.copy(input_database_path, colmap_db_path) # find correspondences between the colmap db and the kapture data images_all = {image_path: (ts, cam_id) for ts, shot in kapture_data.records_camera.items() for cam_id, image_path in shot.items()} colmap_db = COLMAPDatabase.connect(colmap_db_path) colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db) colmap_images = database_extra.get_images_from_database(colmap_db) colmap_db.close() # dict ( kapture_camera -> colmap_camera_id ) colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id for image_path, colmap_cam_id in colmap_images if image_path in images_all} images_to_add = {image_path: value for image_path, value in images_all.items() if image_path not in colmap_image_ids} flatten_images_to_add = [(ts, kapture_cam_id, image_path) for image_path, (ts, kapture_cam_id) in images_to_add.items()] if 'import_to_db' not in skip_list: logger.info("Step 1: Add precomputed keypoints and matches to colmap db") if keypoints_type is None: keypoints_type = try_get_only_key_from_collection(kapture_data.keypoints) assert keypoints_type is not None assert keypoints_type in kapture_data.keypoints assert keypoints_type in kapture_data.matches cameras_to_add = kapture.Sensors() for _, (_, kapture_cam_id) in images_to_add.items(): if kapture_cam_id not in colmap_camera_ids: kapture_cam = kapture_data.sensors[kapture_cam_id] cameras_to_add[kapture_cam_id] = kapture_cam colmap_db = COLMAPDatabase.connect(colmap_db_path) colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db) colmap_camera_ids.update(colmap_added_camera_ids) colmap_added_image_ids = database_extra.add_images_to_database_from_flatten( colmap_db, flatten_images_to_add, kapture_data.trajectories, colmap_camera_ids) colmap_image_ids.update(colmap_added_image_ids) colmap_image_ids_reversed = {v: k for k, v in colmap_image_ids.items()} # colmap_id : name # add new features colmap_keypoints = database_extra.get_keypoints_set_from_database(colmap_db, colmap_image_ids_reversed) keypoints_all = kapture_data.keypoints[keypoints_type] keypoints_to_add = {name for name in keypoints_all if name not in colmap_keypoints} keypoints_to_add = kapture.Keypoints(keypoints_all.type_name, keypoints_all.dtype, keypoints_all.dsize, keypoints_to_add) database_extra.add_keypoints_to_database(colmap_db, keypoints_to_add, keypoints_type, kapture_path, tar_handlers, colmap_image_ids) # add new matches colmap_matches = kapture.Matches(database_extra.get_matches_set_from_database(colmap_db, colmap_image_ids_reversed)) colmap_matches.normalize() matches_all = kapture_data.matches[keypoints_type] matches_to_add = kapture.Matches({pair for pair in matches_all if pair not in colmap_matches}) # print(list(matches_to_add)) database_extra.add_matches_to_database(colmap_db, matches_to_add, keypoints_type, kapture_path, tar_handlers, colmap_image_ids, export_two_view_geometry=not use_colmap_matches_importer) colmap_db.close() if use_colmap_matches_importer: logger.info('Step 2: Run geometric verification') logger.debug('running colmap matches_importer...') if keypoints_type is None: keypoints_type = try_get_only_key_from_collection(kapture_data.matches) assert keypoints_type is not None assert keypoints_type in kapture_data.matches # compute two view geometry colmap_lib.run_matches_importer_from_kapture_matches( colmap_binary, colmap_use_cpu=True, colmap_gpu_index=None, colmap_db_path=colmap_db_path, kapture_matches=kapture_data.matches[keypoints_type], force=force) else: logger.info('Step 2: Run geometric verification - skipped') if 'image_registrator' not in skip_list: logger.info("Step 3: Run image_registrator") # run image_registrator colmap_lib.run_image_registrator( colmap_binary, colmap_db_path, input_reconstruction_path, reconstruction_path, image_registrator_options ) # run model_converter if 'model_converter' not in skip_list: logger.info("Step 4: Export reconstruction results to txt") colmap_lib.run_model_converter( colmap_binary, reconstruction_path, reconstruction_path )
def run_colmap_gv_from_loaded_data(kapture_none_matches: kapture.Kapture, kapture_colmap_matches: kapture.Kapture, kapture_none_matches_dirpath: str, kapture_colmap_matches_dirpath: str, tar_handlers_none_matches: Optional[TarCollection], tar_handlers_colmap_matches: Optional[TarCollection], colmap_binary: str, keypoints_type: Optional[str], skip_list: List[str], force: bool): logger.info('run_colmap_gv...') if not (kapture_none_matches.records_camera and kapture_none_matches.sensors and kapture_none_matches.keypoints and kapture_none_matches.matches): raise ValueError('records_camera, sensors, keypoints, matches are mandatory') # COLMAP does not fully support rigs. if kapture_none_matches.rigs is not None and kapture_none_matches.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_none_matches.trajectories, kapture_none_matches.rigs) # Set fixed name for COLMAP database colmap_db_path = os.path.join(kapture_colmap_matches_dirpath, 'colmap.db') if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) if keypoints_type is None: keypoints_type = try_get_only_key_from_collection(kapture_none_matches.matches) assert keypoints_type is not None assert keypoints_type in kapture_none_matches.keypoints assert keypoints_type in kapture_none_matches.matches if 'matches_importer' not in skip_list: logger.debug('compute matches difference.') if kapture_colmap_matches.matches is not None and keypoints_type in kapture_colmap_matches.matches: colmap_matches = kapture_colmap_matches.matches[keypoints_type] else: colmap_matches = kapture.Matches() matches_to_verify = kapture.Matches(kapture_none_matches.matches[keypoints_type].difference(colmap_matches)) kapture_data_to_export = kapture.Kapture(sensors=kapture_none_matches.sensors, trajectories=kapture_none_matches.trajectories, records_camera=kapture_none_matches.records_camera, keypoints={ keypoints_type: kapture_none_matches.keypoints[keypoints_type] }, matches={ keypoints_type: matches_to_verify }) # creates a new database with matches logger.debug('export matches difference to db.') colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.kapture_to_colmap(kapture_data_to_export, kapture_none_matches_dirpath, tar_handlers_none_matches, colmap_db, keypoints_type, None, export_two_view_geometry=False) # close db before running colmap processes in order to avoid locks colmap_db.close() logger.debug('run matches_importer command.') colmap_lib.run_matches_importer_from_kapture_matches( colmap_binary, colmap_use_cpu=True, colmap_gpu_index=None, colmap_db_path=colmap_db_path, kapture_matches=matches_to_verify, force=force ) if 'import' not in skip_list: logger.debug('import verified matches.') os.umask(0o002) colmap_db = COLMAPDatabase.connect(colmap_db_path) kapture_data = kapture.Kapture() kapture_data.records_camera, _ = get_images_and_trajectories_from_database(colmap_db) kapture_data.matches = { keypoints_type: get_matches_from_database(colmap_db, kapture_data.records_camera, kapture_colmap_matches_dirpath, tar_handlers_colmap_matches, keypoints_type, no_geometric_filtering=False) } colmap_db.close() if kapture_colmap_matches.matches is None: kapture_colmap_matches.matches = {} if keypoints_type not in kapture_colmap_matches.matches: kapture_colmap_matches.matches[keypoints_type] = kapture.Matches() kapture_colmap_matches.matches[keypoints_type].update(kapture_data.matches[keypoints_type]) if 'delete_db' not in skip_list: logger.debug('delete intermediate colmap db.') os.remove(colmap_db_path)
def colmap_build_sift_map(kapture_path: str, colmap_path: str, colmap_binary: str, colmap_use_cpu: bool, colmap_gpu_index: str, vocab_tree_path: str, point_triangulator_options: List[str], skip_list: List[str], force: bool) -> None: """ Build a colmap model using default SIFT features with the kapture data. :param kapture_path: path to the kapture to use :param colmap_path: path to the colmap build :param colmap_binary: path to the colmap executable :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu :param colmap_gpu_index: gpu index for sift extractor and mapper :param vocab_tree_path: path to the colmap vocabulary tree file :param point_triangulator_options: options for the point triangulator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ os.makedirs(colmap_path, exist_ok=True) # Load input files first to make sure it is OK logger.info('loading kapture files...') kapture_data = kapture.io.csv.kapture_from_dir(kapture_path) if not (kapture_data.records_camera and kapture_data.sensors): raise ValueError('records_camera, sensors are mandatory') if not kapture_data.trajectories: logger.info('there are no trajectories, running mapper instead of point_triangulator') if not os.path.isfile(vocab_tree_path): raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}') # COLMAP does not fully support rigs. if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() # Set fixed name for COLMAP database colmap_db_path = path.join(colmap_path, 'colmap.db') image_list_path = path.join(colmap_path, 'images.list') reconstruction_path = path.join(colmap_path, "reconstruction") if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) safe_remove_file(image_list_path, force) safe_remove_any_path(reconstruction_path, force) os.makedirs(reconstruction_path, exist_ok=True) if 'feature_extract' not in skip_list: logger.info("Step 1: Feature extraction using colmap") with open(image_list_path, 'w') as fid: for timestamp, sensor_id in sorted(kapture_data.records_camera.key_pairs()): fid.write(kapture_data.records_camera[timestamp][sensor_id] + "\n") colmap_lib.run_feature_extractor( colmap_binary, colmap_use_cpu, colmap_gpu_index, colmap_db_path, get_image_fullpath(kapture_path), image_list_path ) # Update cameras in COLMAP: # - use only one camera for all images taken with the same camera (update all camera IDs) # - import camera intrinsics # - import camera pose if 'update_db_cameras' not in skip_list: logger.info("Step 2: Populate COLMAP DB with cameras and poses") colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.update_DB_cameras_and_poses(colmap_db, kapture_data) # close db before running colmap processes in order to avoid locks colmap_db.close() # Extract matches with COLMAP if 'matches' not in skip_list: logger.info("Step 3: Compute matches with colmap") colmap_lib.run_vocab_tree_matcher( colmap_binary, colmap_use_cpu, colmap_gpu_index, colmap_db_path, vocab_tree_path) if kapture_data.trajectories is not None: # Generate priors for reconstruction txt_path = path.join(colmap_path, "priors_for_reconstruction") os.makedirs(txt_path, exist_ok=True) if 'priors_for_reconstruction' not in skip_list: logger.info('Step 4: Exporting priors for reconstruction.') colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.generate_priors_for_reconstruction(kapture_data, colmap_db, txt_path) colmap_db.close() # Point triangulator reconstruction_path = path.join(colmap_path, "reconstruction") os.makedirs(reconstruction_path, exist_ok=True) if 'triangulation' not in skip_list: logger.info("Step 5: Triangulation") colmap_lib.run_point_triangulator( colmap_binary, colmap_db_path, get_image_fullpath(kapture_path), txt_path, reconstruction_path, point_triangulator_options ) else: # mapper reconstruction_path = path.join(colmap_path, "reconstruction") os.makedirs(reconstruction_path, exist_ok=True) if 'triangulation' not in skip_list: logger.info("Step 5: Triangulation") colmap_lib.run_mapper( colmap_binary, colmap_db_path, get_image_fullpath(kapture_path), None, reconstruction_path, point_triangulator_options ) # use reconstruction 0 as main first_reconstruction = os.path.join(reconstruction_path, '0') files = os.listdir(first_reconstruction) for f in files: shutil.move(os.path.join(first_reconstruction, f), os.path.join(reconstruction_path, f)) shutil.rmtree(first_reconstruction) # run model_converter if 'model_converter' not in skip_list: logger.info("Step 6: Export reconstruction results to txt") colmap_lib.run_model_converter( colmap_binary, reconstruction_path, reconstruction_path )
def colmap_localize_sift(kapture_path: str, colmap_path: str, input_database_path: str, input_reconstruction_path: str, colmap_binary: str, colmap_use_cpu: bool, colmap_gpu_index: str, vocab_tree_path: str, image_registrator_options: List[str], skip_list: List[str], force: bool) -> None: """ Localize images on a colmap model using default SIFT features with the kapture data. :param kapture_path: path to the kapture to use :param colmap_path: path to the colmap build :param input_database_path: path to the map colmap.db :param input_database_path: path to the map colmap.db :param input_reconstruction_path: path to the map reconstruction folder :param colmap_use_cpu: to use cpu only (and ignore gpu) or to use also gpu :param colmap_gpu_index: gpu index for sift extractor and mapper :param vocab_tree_path: path to the colmap vocabulary tree file :param image_registrator_options: options for the image registrator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ os.makedirs(colmap_path, exist_ok=True) # Set fixed name for COLMAP database # Load input files first to make sure it is OK logger.info('loading kapture files...') kapture_data = kapture.io.csv.kapture_from_dir(kapture_path) if not (kapture_data.records_camera and kapture_data.sensors): raise ValueError('records_camera, sensors are mandatory') if kapture_data.trajectories: logger.warning("Input data contains trajectories: they will be ignored") kapture_data.trajectories.clear() else: kapture_data.trajectories = kapture.Trajectories() if not os.path.isfile(vocab_tree_path): raise ValueError(f'Vocabulary Tree file does not exist: {vocab_tree_path}') # COLMAP does not fully support rigs. if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() # Prepare output # Set fixed name for COLMAP database colmap_db_path = path.join(colmap_path, 'colmap.db') image_list_path = path.join(colmap_path, 'images.list') reconstruction_path = path.join(colmap_path, "reconstruction") if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) safe_remove_file(image_list_path, force) safe_remove_any_path(reconstruction_path, force) os.makedirs(reconstruction_path, exist_ok=True) # Copy colmap db to output if not os.path.exists(colmap_db_path): shutil.copy(input_database_path, colmap_db_path) # find correspondences between the colmap db and the kapture data images_all = {image_path: (ts, cam_id) for ts, shot in kapture_data.records_camera.items() for cam_id, image_path in shot.items()} colmap_db = COLMAPDatabase.connect(colmap_db_path) colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db) colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db) colmap_images = database_extra.get_images_from_database(colmap_db) colmap_db.close() # dict ( kapture_camera -> colmap_camera_id ) colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id for image_path, colmap_cam_id in colmap_images if image_path in images_all} images_to_add = {image_path: value for image_path, value in images_all.items() if image_path not in colmap_image_ids} flatten_images_to_add = [(ts, kapture_cam_id, image_path) for image_path, (ts, kapture_cam_id) in images_to_add.items()] if 'feature_extract' not in skip_list: logger.info("Step 1: Feature extraction using colmap") with open(image_list_path, 'w') as fid: for image in images_to_add.keys(): fid.write(image + "\n") colmap_lib.run_feature_extractor( colmap_binary, colmap_use_cpu, colmap_gpu_index, colmap_db_path, get_image_fullpath(kapture_path), image_list_path ) if 'matches' not in skip_list: logger.info("Step 2: Compute matches with colmap") colmap_lib.run_vocab_tree_matcher( colmap_binary, colmap_use_cpu, colmap_gpu_index, colmap_db_path, vocab_tree_path, image_list_path ) if 'fix_db_cameras' not in skip_list: logger.info("Step 3: Replace colmap generated cameras with kapture cameras") colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.foreign_keys_off(colmap_db) # remove colmap generated cameras after_feature_extraction_colmap_cameras = database_extra.get_camera_ids_from_database(colmap_db) colmap_cameras_to_remove = [cam_id for cam_id in after_feature_extraction_colmap_cameras if cam_id not in colmap_cameras] for cam_id in colmap_cameras_to_remove: database_extra.remove_camera(colmap_db, cam_id) # put the correct cameras and image extrinsic back into the database cameras_to_add = kapture.Sensors() for image_path, (ts, kapture_cam_id) in images_to_add.items(): if kapture_cam_id not in colmap_camera_ids: kapture_cam = kapture_data.sensors[kapture_cam_id] cameras_to_add[kapture_cam_id] = kapture_cam colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db) colmap_camera_ids.update(colmap_added_camera_ids) database_extra.update_images_in_database_from_flatten( colmap_db, flatten_images_to_add, kapture_data.trajectories, colmap_camera_ids ) database_extra.foreign_keys_on(colmap_db) colmap_db.commit() colmap_db.close() if 'image_registrator' not in skip_list: logger.info("Step 4: Run image_registrator") # run image_registrator colmap_lib.run_image_registrator( colmap_binary, colmap_db_path, input_reconstruction_path, reconstruction_path, image_registrator_options ) # run model_converter if 'model_converter' not in skip_list: logger.info("Step 5: Export reconstruction results to txt") colmap_lib.run_model_converter( colmap_binary, reconstruction_path, reconstruction_path )
def reconstruct(self, kapture_data): os.makedirs(self._colmap_path, exist_ok=True) if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches and kapture_data.trajectories): raise ValueError( 'records_camera, sensors, keypoints, matches, trajectories are mandatory' ) # Set fixed name for COLMAP database colmap_db_path = path.join(self._colmap_path, 'colmap.db') reconstruction_path = path.join(self._colmap_path, "reconstruction") priors_txt_path = path.join(self._colmap_path, "priors_for_reconstruction") safe_remove_file(colmap_db_path, True) safe_remove_any_path(reconstruction_path, True) safe_remove_any_path(priors_txt_path, True) os.makedirs(reconstruction_path, exist_ok=True) # COLMAP does not fully support rigs. print("Step 1. Remove rigs") if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() print("Step 2. Kapture to colmap") colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.kapture_to_colmap(kapture_data, kapture_data.kapture_path, colmap_db, export_two_view_geometry=True) colmap_db.close() os.makedirs(priors_txt_path, exist_ok=True) print("Step 3. Generate priors for reconstruction") colmap_db = COLMAPDatabase.connect(colmap_db_path) database_extra.generate_priors_for_reconstruction( kapture_data, colmap_db, priors_txt_path) colmap_db.close() # Point triangulator print("Step 4. Point triangulator") reconstruction_path = path.join(self._colmap_path, "reconstruction") os.makedirs(reconstruction_path, exist_ok=True) run_point_triangulator(self._colmap_binary, colmap_db_path, kapture_data.image_path, priors_txt_path, reconstruction_path, self._point_triangulator_options) print("Step 5. Model converter") run_model_converter(self._colmap_binary, reconstruction_path, reconstruction_path) print("Step 5. Reconstruction import") points3d, observations = import_from_colmap_points3d_txt( os.path.join(reconstruction_path, "points3D.txt"), kapture_data.image_names) kapture_data.observations = observations kapture_data.points3d = points3d