Example #1
0
def test_deepwalk():
    """
    Testing the DeepWalk class.
    """
    model = DeepWalk()

    graph = nx.watts_strogatz_graph(100, 10, 0.5)

    model.fit(graph)

    embedding = model.get_embedding()

    assert embedding.shape[0] == graph.number_of_nodes()
    assert embedding.shape[1] == model.dimensions
    assert type(embedding) == np.ndarray

    model = DeepWalk(dimensions=32)

    graph = nx.watts_strogatz_graph(150, 10, 0.5)

    model.fit(graph)

    embedding = model.get_embedding()

    assert embedding.shape[0] == graph.number_of_nodes()
    assert embedding.shape[1] == model.dimensions
    assert type(embedding) == np.ndarray
Example #2
0
 def embed(self):
     seed = np.random.randint(1e6)
     model = DW(dimensions=self.dim_embedding,
                walk_length=self.walk_length,
                window_size=self.window_size,
                seed=seed)
     model.fit(self.graph.to_undirected())
     self.embedding = model.get_embedding()
def test_neu():
    """
    Test the NEU meta embedding class.
    """
    graph = nx.newman_watts_strogatz_graph(100, 20, 0.05)

    model = NetMF()
    meta_model = NEU()
    meta_model.fit(graph, model)
    embedding = meta_model.get_embedding()

    assert embedding.shape[0] == graph.number_of_nodes()
    assert type(embedding) == np.ndarray

    graph = nx.newman_watts_strogatz_graph(200, 20, 0.05)

    model = DeepWalk()
    meta_model = NEU()
    meta_model.fit(graph, model)
    embedding = meta_model.get_embedding()

    assert embedding.shape[0] == graph.number_of_nodes()
    assert type(embedding) == np.ndarray
Example #4
0
def karate_factory(algo, dim, nwalks, workers):
    if algo == "walklets":
        karate_obj = Walklets(dimensions=int(dim / 4),
                              walk_number=nwalks,
                              workers=workers)
    elif algo == "role2vec":
        karate_obj = Role2Vec(dimensions=dim,
                              walk_number=nwalks,
                              workers=workers)
    elif algo == "diff2vec":
        karate_obj = Diff2Vec(dimensions=dim,
                              diffusion_number=nwalks,
                              workers=workers)
    elif algo == "deepwalk":
        karate_obj = DeepWalk(dimensions=dim,
                              walk_number=nwalks,
                              workers=workers)
    elif algo == "boostne":
        karate_obj = BoostNE(dimensions=int(dim / 17) + 1)
    elif algo == "nodesketch":
        karate_obj = NodeSketch(dimensions=dim)
    elif algo == "netmf":
        karate_obj = NetMF(dimensions=dim)
    elif algo == "hope":
        karate_obj = HOPE(dimensions=dim)
    elif algo == "grarep":
        karate_obj = GraRep(dimensions=int(dim / 5) + 1)
    elif algo == "nmfadmm":
        karate_obj = NMFADMM(dimensions=int(dim / 2))
    elif algo == "graphwave":
        karate_obj = GraphWave()
    elif algo == "laplacian":
        karate_obj = LaplacianEigenmaps(dimensions=dim)
    else:
        raise RuntimeError("Invalid model type: %s" % algo)
    return karate_obj
Example #5
0
def deepwalk_embedding(Graph):
    dw = DeepWalk(dimensions=256)
    G = nx.convert_node_labels_to_integers(Graph)
    dw.fit(G)
    embeddings = dw.get_embedding()
    return embeddings
    if save == 'T':
        plt.savefig(output_png_filename)
    else:
        plt.show()
    plt.close()
    return


####################################################################################
# Main
####################################################################################
#
# DeepWalk
g = nx.newman_watts_strogatz_graph(100, 20, 0.05)
draw_graph(g)
model = DeepWalk()
model.fit(g)
embedding = model.get_embedding()
#
# Walklets
model = Walklets()
model.fit(g)
embedding = model.get_embedding()
#
# Community Detection with LabelPropagation
# Get graph
reader = GraphReader("facebook")
graph = reader.get_graph()
draw_graph(graph, 'F', 'F', '')
target = reader.get_target()
# Fit