def get_kcorrections(row):
    maggies = np.array(pow(10, -0.4 * row[1:6]))
    invar = pow(0.4 * math.log(10) * maggies * np.array(row[6:12]), -2)
    k_tuple = np.concatenate(([row[0]], maggies, invar))
    kcorrect_tuple = kcorrect.fit_coeffs(k_tuple)
    k_coeff = kcorrect.reconstruct_maggies(kcorrect_tuple)
    final_input = maggies / np.array(k_coeff[1:])
    return [-2.5 * math.log(item, 10) for item in final_input], k_coeff[0]
def looking_at_redshift(z_low,z_high,name):
    # setting things up    
    cosmo = FlatLambdaCDM(H0=70 * u.km / u.s / u.Mpc, Om0=0.3)
    kcorrect.load_templates()
    kcorrect.load_filters()
    
    # form of input for fit_coeff
    # redshift umaggies gmaggies rmaggies imaggies zmaggies uinvvar ginvvar rinvvar iinvvar zinvvar
    # output: redshift u_rec g_rec r_rec i_rec z_rec
           
    x = []
    y = []
    
    array = np.load('/home/calum/Documents/MPhysProj/mgs_sample/mgs_kcorrect_array.npy')
    
    print('Number of results:',len(array))
    print('Starting for loop...')
    
    # need to sort out the coefficents so they're in units of maggies!
    #Note that the conversion to the inverse variances from the maggies and the magnitude errors is (0.4 ln(10) × maggies × magerr)-2
    # maggies are simply related to magnitudes by 10−0.4m
    for row in array:
        # kcorrect
        maggies = np.array(pow(10,-0.4*row[2:7]))
        invar = pow(0.4*math.log(10)*maggies*np.array(row[7:]),-2) 
        k_tuple = np.concatenate(([row[1]],maggies,invar))
        kcorrect_tuple = kcorrect.fit_coeffs(k_tuple)
        k_coeff = kcorrect.reconstruct_maggies(kcorrect_tuple)
        final_input = maggies/np.array(k_coeff[1:])
        kcorrection_array = [-2.5*math.log(item,10) for item in final_input]
        # put above in a function probs 
        y_val = float(row[2]) - kcorrection_array[1] - float(row[4]) + kcorrection_array[3]
        z = k_coeff[0]
        if y_val > 0 and y_val < 6.5:
            if z > z_low and z < z_high:
                x_val = float(row[0])-5*(math.log(cosmo.luminosity_distance(z).to(u.pc).value/10 ,10))
                if x_val < -15.5 and x_val > -23.5: 
                    x.append(x_val)
                    y.append(y_val)
                    
    contour_plot_array = np.array([x,y])
    print('Length of output:',len(x))
                    
    np.save('/home/calum/Documents/MPhysProj/data/'+name+'.npy',contour_plot_array)
    print('Finished:',name)
Example #3
0
maggie_i = 10**((22.5 - data['mag_i'][ind]) / 2.5)
maggie_z = 10**((22.5 - data['mag_z'][ind]) / 2.5)

import kcorrect, numpy
kcorrect.load_templates()
kcorrect.load_filters()
z_arr = data['z'][ind]

for i in range(n_source):
    print(i)
    a = [
        data['z'][ind[i]], maggie_u[i], maggie_g[i], maggie_r[i], maggie_i[i],
        maggie_z[i], 6.216309e+16, 3.454767e+17, 1.827409e+17, 1.080889e+16,
        3163927000000000.0
    ]
    c = kcorrect.fit_coeffs(a)
    m = kcorrect.reconstruct_maggies(c)
    maggie_u[i] = m[1]
    maggie_g[i] = m[2]
    maggie_r[i] = m[3]
    maggie_i[i] = m[4]
    maggie_z[i] = m[5]

type_arr = np.zeros(len(ind))
type_arr = type_arr - 999
O2_index = np.log10((data['o21'][ind] + data['o22'][ind]) / data['hb'][ind])

O3_index = np.log10(data['o3'][ind] / data['hb'][ind])
sigma_o3 = np.log10(np.sqrt(data['sigma_o3'][ind]**2))  #-55**2))
sigma_star = np.log10(data['VDISP'][ind])
indt = np.where(sigma_star == 0)
array = np.load(
    '/home/calum/Documents/Mphys_data/mgs_multiwavelength/final_mgs_array.npy')

print('Number of results:', len(array))
print('Starting for loop...')

# need to sort out the coefficents so they're in units of maggies!
#Note that the conversion to the inverse variances from the maggies and the magnitude errors is (0.4 ln(10) × maggies × magerr)-2
# maggies are simply related to magnitudes by 10−0.4m
for row in array:
    # kcorrect
    maggies = np.array(pow(10, -0.4 * row[2:7]))
    invar = pow(0.4 * math.log(10) * maggies * np.array(row[7:12]), -2)
    k_tuple = np.concatenate(([row[1]], maggies, invar))
    kcorrect_tuple = kcorrect.fit_coeffs(k_tuple)
    k_coeff = kcorrect.reconstruct_maggies(kcorrect_tuple)
    final_input = maggies / np.array(k_coeff[1:])
    kcorrection_array = [-2.5 * math.log(item, 10) for item in final_input]
    # put above in a function probs
    y_val = float(row[2]) - kcorrection_array[1] - float(
        row[4]) + kcorrection_array[3]
    z = k_coeff[0]
    if z > 0:
        if np.isnan(y_val):
            # why wouldn't y_val be a number?
            print('do not worry, everything is fine now')
        else:
            x_val = float(row[0]) - 5 * (math.log(
                cosmo.luminosity_distance(z).to(u.pc).value / 10, 10))
            obj.append(row[13])
Example #5
0
def add_stellar_mass(base, cosmology=WMAP9):
    """
    Calculate stellar mass based only on gi colors and redshift and add to base catalog.
    Based on GAMA data using Taylor et al (2011).

    `base` is modified in-place.

    Parameters
    ----------
    base : astropy.table.Table

    Returns
    -------
    base : astropy.table.Table
    """
    base['log_sm'] = np.nan

    global _HAS_KCORRECT
    if not _HAS_KCORRECT:
        logging.warn('No kcorrect module. Stellar mass not calculated!')
        return base

    if 'OBJID_sdss' in base.colnames:  # version 2 base catalog with SDSS
        postfix = '_sdss'
        to_calc_query = Query(C.has_spec, 'OBJID_sdss != -1')
    elif 'EXTINCTION_U' in base.colnames:  # version 1 base catalog
        postfix = ''
        to_calc_query = C.has_spec
        for b in get_sdss_bands():
            base['{}_mag'.format(b)] = base[b] - base['EXTINCTION_{}'.format(
                b.upper())]
    else:  # version 2 base catalog without SDSS
        logging.warn('No SDSS bands! Stellar mass not calculated!')
        return base

    to_calc_mask = to_calc_query.mask(base)
    if not to_calc_mask.any():
        logging.warn('Stellar mass not calculated because no valid entry!')
        return base

    if _HAS_KCORRECT != 'LOADED':
        kcorrect.load_templates()
        kcorrect.load_filters()
        _HAS_KCORRECT = 'LOADED'

    mag = view_table_as_2d_array(base, ('{}_mag{}'.format(b, postfix)
                                        for b in get_sdss_bands()),
                                 to_calc_mask, np.float32)
    mag_err = view_table_as_2d_array(base, ('{}_err{}'.format(b, postfix)
                                            for b in get_sdss_bands()),
                                     to_calc_mask, np.float32)
    redshift = view_table_as_2d_array(base, ['SPEC_Z'], to_calc_mask,
                                      np.float32)

    # CONVERT SDSS MAGNITUDES INTO MAGGIES
    mgy = 10.0**(-0.4 * mag)
    mgy_ivar = (0.4 * np.log(10.0) * mgy * mag_err)**-2.0
    kcorrect_input = np.hstack((redshift, mgy, mgy_ivar))

    # USE ASTROPY TO CALCULATE LUMINOSITY DISTANCE
    lf_distmod = cosmology.distmod(redshift.ravel()).value

    # RUN KCORRECT FIT, AND CALCULATE STELLAR MASS
    tmremain = np.array([0.601525, 0.941511, 0.607033, 0.523732, 0.763937])
    sm_not_normed = np.fromiter((np.dot(kcorrect.fit_coeffs(x)[1:], tmremain)
                                 for x in kcorrect_input), np.float64,
                                len(kcorrect_input))
    base['log_sm'][to_calc_mask] = np.log10(sm_not_normed) + (0.4 * lf_distmod)

    return base