def reference_survey_paircount(pos1, w1, redges, Nmu, pos2=None, w2=None, los=2): """Reference pair counting via kdcount""" tree1 = correlate.points(pos1, boxsize=None, weights=w1) if pos2 is None: tree2 = tree1 else: tree2 = correlate.points(pos2, boxsize=None, weights=w2) bins = correlate.RmuBinning(redges, Nmu, observer=(0, 0, 0), mu_min=0., absmu=True) pc = correlate.paircount(tree1, tree2, bins, np=0, compute_mean_coords=True) return numpy.nan_to_num(pc.pair_counts), numpy.nan_to_num( pc.mean_centers[0]), pc.sum1
def reference_2pcf_smu(sedges,muedges,position1,weight1,position2=None,weight2=None,los='midpoint'): """Reference pair counting via kdcount""" tree1 = correlate.points(position1,boxsize=None,weights=weight1) if position2 is None: tree2 = tree1 else: tree2 = correlate.points(position2,boxsize=None,weights=weight2) if los=='midpoint': bins = correlate.RmuBinning(np.asarray(sedges),(len(muedges)-1),observer=(0,0,0),mu_min=muedges[0],mu_max=muedges[-1],absmu=False) else: bins = correlate.FlatSkyBinning(np.asarray(sedges),(len(muedges)-1),los='xyz'.index(los),mu_min=muedges[0],mu_max=muedges[-1],absmu=False) pc = correlate.paircount(tree2,tree1,bins,np=0,usefast=False,compute_mean_coords=True) return pc.sum1