Example #1
0
from kemp.fdtd3d.gpu import Fields, Core, DirectIncident, GetFields, Pbc
from kemp.fdtd3d.util import common_exchange


nx, ny, nz = 200, 300, 16
tmax, tgap = 200, 10

# instances
from kemp.fdtd3d.util import common_gpu
import pyopencl as cl
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
fields = Fields(context, gpu_devices[0], nx, ny, nz)
#fields = Fields(nx, ny, nz)

core = Core(fields)
pbc = Pbc(fields, 'x')
pbc = Pbc(fields, 'y')
pbc = Pbc(fields, 'z')
print fields.instance_list

tfunc = lambda tstep: np.sin(0.05 * tstep)
incident = DirectIncident(fields, 'ez', (20, 0, 0), (20, ny-1, nz-1), tfunc) 
incident = DirectIncident(fields, 'ey', (0, 20, 0), (nx-1, 20, nz-1), tfunc) 
#incident = DirectIncident(fields, 'ex', (0, 0, 20), (nx-1, ny-1, 20), tfunc) 
getf = GetFields(fields, 'ez', (0, 0, nz/2), (nx-1, ny-1, nz/2))

# for verify pbc
vpbc = common_exchange.VerifyPbc(fields, 'xyz')

# plot
Example #2
0
#nx, ny, nz = 544, 544, 544  # 5527 MB
#nx, ny, nz = 512, 512, 512  # 4608 MB
#nx, ny, nz = 480, 480, 480  # 3796 MB
nx, ny, nz = 800, 256, 256  # 576 MB
#nx, ny, nz = 128, 128, 128  # 72 MB

coeff_use = 'e'
precision_float = 'single'

# instances
gpu_devices = common_gpu.gpu_device_list(print_info=False)
context = cl.Context(gpu_devices)
device = gpu_devices[0]
qtask = cpu.QueueTask()
fields = Fields(context, device, qtask, nx, ny, nz, coeff_use, precision_float)
Core(fields)

tmax = 250 if is_plot else 1000
if rank == 0: direction = '+'
elif rank == size - 1: direction = '-'
else: direction = '+-'

#exch = node.ExchangeMpiNonBlock(fields, direction)

#exch = node.ExchangeMpiBufferBlock(fields, direction)
#exch = node.ExchangeMpiBufferBlockSplit(fields, direction)
exch = node.ExchangeMpiBufferNonBlockSplitEnqueue(fields, direction, tmax)
if '+' in direction: cpu.Core(exch.cpuf_p)
if '-' in direction: cpu.Core(exch.cpuf_m)

is_master = True if rank == 0 else False
Example #3
0
    def runTest(self):
        ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args

        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, coeff_use,
                        precision_float)
        core = Core(fields)

        # allocations
        ns = fields.ns
        dtype = fields.dtype
        strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']

        ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc)
        fields.set_eh_bufs(*ehs)

        ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz,
                                                    dtype)
        if 'e' in coeff_use:
            fields.set_ce_bufs(*ces)
        if 'h' in coeff_use:
            fields.set_ch_bufs(*chs)

        tmpf = np.zeros(fields.ns_pitch, dtype=dtype)

        # update
        if ufunc == 'e':
            for tstep in xrange(0, tmax):
                fields.update_e()
                common_update.update_e(ehs, ces)

            for strf, eh in zip(strf_list, ehs)[:3]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'ez':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))

        elif ufunc == 'h':
            for tstep in xrange(0, tmax):
                fields.update_h()
                common_update.update_h(ehs, chs)

            for strf, eh in zip(strf_list, ehs)[3:]:
                cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf))
                norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z])
                max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max()
                self.assertEqual(
                    norm, 0,
                    '%s, %s, %g, %g' % (self.args, strf, norm, max_diff))

                if fields.pad != 0:
                    if strf == 'hz':
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    else:
                        norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:])
                    self.assertEqual(
                        norm2, 0,
                        '%s, %s, %g, padding' % (self.args, strf, norm2))