Example #1
0
def tabappend(hdu1, hdu2, logfile, verbose):

    status = 0
    nrows1 = hdu1.data.shape[0]
    nrows2 = hdu2.data.shape[0]
    nrows = nrows1 + nrows2
    out = pyfits.new_table(hdu1.columns, nrows=nrows)
    for name in hdu1.columns.names:
        try:
            out.data.field(name)[nrows1:] = hdu2.data.field(name)
        except:
            message = 'WARNING -- KEPIO.TABAPPEND: could not append column '
            message += str(name)
            status = kepmsg.warn(logfile, message, verbose)

    return out, status
Example #2
0
def tabappend(hdu1,hdu2,logfile,verbose):

    status = 0
    nrows1 = hdu1.data.shape[0]
    nrows2 = hdu2.data.shape[0]
    nrows = nrows1 + nrows2
    out = pyfits.new_table(hdu1.columns,nrows=nrows)
    for name in hdu1.columns.names:
	try:
	    out.data.field(name)[nrows1:] = hdu2.data.field(name)
	except:
	    message  = 'WARNING -- KEPIO.TABAPPEND: could not append column '
	    message += str(name)
	    status = kepmsg.warn(logfile,message,verbose)

    return out, status
Example #3
0
def kepimages(infile,outfix,imtype,ranges,clobber,verbose,logfile,status): 

# startup parameters

    status = 0

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPIMAGES -- '
    call += 'infile='+infile+' '
    call += 'outfix='+outfix+' '
    call += 'imtype='+imtype+' '
    call += 'ranges='+str(ranges)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPIMAGES started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# open input file

    status = 0
    print ' '
    instr = pyfits.open(infile,mode='readonly',memmap=True)
    cards0 = instr[0].header.cards
    cards1 = instr[1].header.cards
    cards2 = instr[2].header.cards

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# ingest time series data

    if status == 0:
        time = instr[1].data.field('TIME')[:] + 2454833.0
        timecorr = instr[1].data.field('TIMECORR')[:]
        cadenceno = instr[1].data.field('CADENCENO')[:]
        raw_cnts = instr[1].data.field('RAW_CNTS')[:]
        flux = instr[1].data.field('FLUX')[:]
        flux_err = instr[1].data.field('FLUX_ERR')[:]
        flux_bkg = instr[1].data.field('FLUX_BKG')[:]
        flux_bkg_err = instr[1].data.field('FLUX_BKG_ERR')[:]
        cosmic_rays = instr[1].data.field('COSMIC_RAYS')[:]
        quality = instr[1].data.field('QUALITY')[:]
        pos_corr1 = instr[1].data.field('POS_CORR1')[:]
        pos_corr2 = instr[1].data.field('POS_CORR2')[:]

# choose output image

    if status == 0:
        if imtype.lower() == 'raw_cnts':
            outim = raw_cnts
        elif imtype.lower() == 'flux_err':
            outim = flux_err
        elif imtype.lower() == 'flux_bkg':
            outim = flux_bkg
        elif imtype.lower() == 'flux_bkg_err':
            outim = flux_bkg_err
        elif imtype.lower() == 'cosmic_rays':
            outim = cosmic_rays
        else:
            outim = flux

# identify images to be exported

    if status == 0:
        tim = array([]); dat = array([]); err = array([])
        tstart, tstop, status = kepio.timeranges(ranges,logfile,verbose)
    if status == 0:
        cadencelis, status = kepstat.filterOnRange(time,tstart,tstop)

# provide name for each output file and clobber if file exists

    if status == 0:
        for cadence in cadencelis:
            outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits'
            if clobber and status == 0: status = kepio.clobber(outfile,logfile,verbose)
            if kepio.fileexists(outfile) and status == 0: 
                message = 'ERROR -- KEPIMAGES: ' + outfile + ' exists. Use --clobber'
                status = kepmsg.err(logfile,message,True)

# construct output primary extension

    if status == 0:
        ncad = 0
        for cadence in cadencelis:
            outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits'
            hdu0 = pyfits.PrimaryHDU()
            for i in range(len(cards0)):
                try:
                    if cards0[i].key not in hdu0.header.keys():
                        hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment)
                    else:
                        hdu0.header.cards[cards0[i].key].comment = cards0[i].comment
                except:
                    pass
            status = kepkey.history(call,hdu0,outfile,logfile,verbose)
            outstr = HDUList(hdu0)

# construct output image extension

            hdu1 = ImageHDU(flux[cadence])
            for i in range(len(cards2)):
                try:
                    if cards2[i].key not in hdu1.header.keys():
                        hdu1.header.update(cards2[i].key, cards2[i].value, cards2[i].comment)
                except:
                    pass
            for i in range(len(cards1)):
                if (cards1[i].key not in hdu1.header.keys() and
                    cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY',
                                              '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN',
                                              '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC',
                                              '12PC','21PC','22PC','WCSN','TFIE']):
                    hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment)
            try:
                int_time = cards1['INT_TIME'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find INT_TIME keyword')
            try:
                frametim = cards1['FRAMETIM'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find FRAMETIM keyword')
            try:
                num_frm = cards1['NUM_FRM'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find NUM_FRM keyword')
            hdu1.header.update('EXTNAME','IMAGE','name of extension')
            try:
                hdu1.header.update('TELAPSE',frametim * num_frm,'[s] elapsed time for exposure')
            except:
                hdu1.header.update('TELAPSE',-999,'[s] elapsed time for exposure')
            try:
                hdu1.header.update('LIVETIME',int_time * num_frm,'[s] TELASPE multiplied by DEADC')
            except:
                hdu1.header.update('LIVETIME',-999,'[s] TELASPE multiplied by DEADC')
            try:
                hdu1.header.update('EXPOSURE',int_time * num_frm,'[s] time on source')
            except:
                hdu1.header.update('EXPOSURE',-999,'[s] time on source')
            try:
                hdu1.header.update('MIDTIME',time[cadence],'[BJD] mid-time of exposure')
            except:
                hdu1.header.update('MIDTIME',-999,'[BJD] mid-time of exposure')
            try:
                hdu1.header.update('TIMECORR',timecorr[cadence],'[d] barycenter - timeslice correction')
            except:
                hdu1.header.update('TIMECORR',-999,'[d] barycenter - timeslice correction')
            try:
                hdu1.header.update('CADENCEN',cadenceno[cadence],'unique cadence number')
            except:
                hdu1.header.update('CADENCEN',-999,'unique cadence number')
            try:
                hdu1.header.update('QUALITY',quality[cadence],'pixel quality flag')
            except:
                hdu1.header.update('QUALITY',-999,'pixel quality flag')
            try:
                if True in numpy.isfinite(cosmic_rays[cadence]):
                    hdu1.header.update('COSM_RAY',True,'cosmic ray detected?')
                else:
                    hdu1.header.update('COSM_RAY',False,'cosmic ray detected?')
            except:
                hdu1.header.update('COSM_RAY',-999,'cosmic ray detected?')
            try:
                pc1 = str(pos_corr1[cadence])
                pc2 = str(pos_corr2[cadence])
                hdu1.header.update('POSCORR1',pc1,'[pix] column position correction')
                hdu1.header.update('POSCORR2',pc2,'[pix] row position correction')
            except:
                hdu1.header.update('POSCORR1',-999,'[pix] column position correction')
                hdu1.header.update('POSCORR2',-999,'[pix] row position correction')
            outstr.append(hdu1)

# write output file

            if status == 0:
                outstr.writeto(outfile,checksum=True)
                ncad += 1
                txt  = '\r%3d%% ' % (float(ncad) / float(len(cadencelis)) * 100.0)
                txt += '%s ' % outfile
                sys.stdout.write(txt)
                sys.stdout.flush()

# close input structure

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    
        print '\n'

# end time

    kepmsg.clock('KEPIMAGES finished at',logfile,verbose)
Example #4
0
def MASTRADec(ra,dec,darcsec,srctab):

# coordinate limits

    darcsec /= 3600.0
    ra1 = ra - darcsec / cos(dec * pi / 180)
    ra2 = ra + darcsec / cos(dec * pi / 180)
    dec1 = dec - darcsec
    dec2 = dec + darcsec
 
# build mast query

    url  = 'http://archive.stsci.edu/kepler/kepler_fov/search.php?'
    url += 'action=Search'
    url += '&masterRA=' + str(ra1) + '..' + str(ra2)
    url += '&masterDec=' + str(dec1) + '..' + str(dec2)
    url += '&max_records=10000'
    url += '&verb=3'
    url += '&outputformat=CSV'

# retrieve results from MAST

    if srctab:
        try:
            lines = urllib.request.urlopen(url)
        except:
            message = 'WARNING -- KEPFIELD: Cannot retrieve data from MAST'
            status = kepmsg.warn(logfile,message)
            lines = ''
    else:
        lines = ''

# collate nearby sources

    kepid = []
    kepmag = []
    ra = []
    dec = []
    for line in lines:
        line = line.strip()
        
        # Python 3 hack
        try:
          'Kepler' in line
        except:
          line = line.decode('ascii')
        
        if (len(line) > 0 and 
            'Kepler' not in line and 
            'integer' not in line and
            'no rows found' not in line):
            out = line.split(',')
            r,d = sex2dec(out[0],out[1])
            try:
                if out[-22] != 'Possible_artifact': kepid.append(int(out[2]))
            except:
                if out[-22] != 'Possible_artifact': kepid.append(0)
            try:
                if out[-22] != 'Possible_artifact': kepmag.append(float(out[42]))
            except:
                if out[-22] != 'Possible_artifact': kepmag.append(0.0)
            if out[-22] != 'Possible_artifact': ra.append(r)
            if out[-22] != 'Possible_artifact': dec.append(d)
    kepid = array(kepid)
    kepmag = array(kepmag)
    ra = array(ra)
    dec = array(dec)

    return kepid,ra,dec,kepmag
Example #5
0
def keppixseries(infile,outfile,plotfile,plottype,filter,function,cutoff,clobber,verbose,logfile,status, cmdLine=False): 

# input arguments

    status = 0
    seterr(all="ignore") 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPPIXSERIES -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'plotfile='+plotfile+' '
    call += 'plottype='+plottype+' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter='+filt+ ' '
    call += 'function='+function+' '
    call += 'cutoff='+str(cutoff)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPPIXSERIES started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose)

# print target data

    if status == 0:
        print ''
        print '      KepID:  %s' % kepid
        print ' RA (J2000):  %s' % ra
        print 'Dec (J2000): %s' % dec
        print '     KepMag:  %s' % kepmag
        print '   SkyGroup:    %2s' % skygroup
        print '     Season:    %2s' % str(season)
        print '    Channel:    %2s' % channel
        print '     Module:    %2s' % module
        print '     Output:     %1s' % output
        print ''

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim,xdim,npts))
        errseries = empty((ydim,xdim,npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim):
            for j in range(xdim):
                npts = 0
                for k in range(nrows):
                    if qual[k] == 0 and \
                    numpy.isfinite(barytime[k]) and \
                    numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                        time[npts] = barytime[k]
                        timecorr[npts] = tcorr[k]
                        cadenceno[npts] = cadno[k]
                        quality[npts] = qual[k]
                        pixseries[i,j,npts] = fluxpixels[k,np]
                        errseries[i,j,npts] = errpixels[k,np]
                        npts += 1
                np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose)     
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma  = kepstat.stdev(pixseries[i,j,:len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma  = kepstat.stdev(pixseries[i,j,-len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

# convolve data

                if status == 0:
                    convolved = convolve(padded,filtfunc,'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]
            
# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,j,:] = pixseries[i,j,:] - outdata + outmedian

# construct output file

    if status == 0 and ydim*xdim < 1000:
        instruct, status = kepio.openfits(infile,'readonly',logfile,verbose)
        status = kepkey.history(call,instruct[0],outfile,logfile,verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(Column(name='TIME',format='D',unit='BJD - 2454833',disp='D12.7',array=time))
        cols.append(Column(name='TIMECORR',format='E',unit='d',disp='E13.6',array=timecorr))
        cols.append(Column(name='CADENCENO',format='J',disp='I10',array=cadenceno))
        cols.append(Column(name='QUALITY',format='J',array=quality))
        for i in range(ydim):
            for j in range(xdim):
                colname = 'COL%d_ROW%d' % (i+column,j+row)
                cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT',True,'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME','PIXELSERIES','name of extension')
        except:
            status = 0
        try:
            hdu1.header.update('EXTVER',instruct[1].header['EXTVER'],'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP',instruct[1].header['TELESCOP'],'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME',instruct[1].header['INSTRUME'],'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT',instruct[1].header['OBJECT'],'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID',instruct[1].header['KEPLERID'],'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS',instruct[1].header['RADESYS'],'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ',instruct[1].header['RA_OBJ'],'[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ',instruct[1].header['DEC_OBJ'],'[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX',instruct[1].header['EQUINOX'],'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF',instruct[1].header['TIMEREF'],'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN',instruct[1].header['TASSIGN'],'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS',instruct[1].header['TIMESYS'],'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI',instruct[1].header['BJDREFI'],'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF',instruct[1].header['BJDREFF'],'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT',instruct[1].header['TIMEUNIT'],'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART',instruct[1].header['TSTART'],'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP',instruct[1].header['TSTOP'],'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START',instruct[1].header['LC_START'],'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END',instruct[1].header['LC_END'],'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE',instruct[1].header['TELAPSE'],'[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME',instruct[1].header['LIVETIME'],'[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE',instruct[1].header['EXPOSURE'],'[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC',instruct[1].header['DEADC'],'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR',instruct[1].header['TIMEPIXR'],'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA',instruct[1].header['TIERRELA'],'[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO',instruct[1].header['TIERABSO'],'[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME',instruct[1].header['INT_TIME'],'[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME',instruct[1].header['READTIME'],'[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM',instruct[1].header['FRAMETIM'],'[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM',instruct[1].header['NUM_FRM'],'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL',instruct[1].header['TIMEDEL'],'[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS',instruct[1].header['DATE-OBS'],'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END',instruct[1].header['DATE-END'],'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP',instruct[1].header['BACKAPP'],'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP',instruct[1].header['DEADAPP'],'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP',instruct[1].header['VIGNAPP'],'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN',instruct[1].header['GAIN'],'[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS',instruct[1].header['READNOIS'],'[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT',instruct[1].header['NREADOUT'],'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE',instruct[1].header['TIMSLICE'],'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK',instruct[1].header['MEANBLCK'],'[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,instruct[2].data,instruct[2].header)
        status = kepio.closefits(instruct,logfile,verbose)
    else:
        message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile,message)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.0,
                      'axes.labelsize': 32,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 8,
                      'legend.fontsize': 8,
                      'xtick.labelsize': 12,
                      'ytick.labelsize': 12}
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
	pylab.figure(num=None,figsize=[12,12])
        pylab.clf()
        dx = 0.93 / xdim
        dy = 0.94 / ydim
        ax = pylab.axes([0.06,0.05,0.93,0.94])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5,numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5,numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color' : 'k'})
        pylab.ylabel('arbitrary flux', {'color' : 'k'})
        for i in range(ydim):
            for j in range(xdim):
                tmin = amin(time)
                tmax = amax(time)
                try:
                    numpy.isfinite(amin(pixseries[i,j,:]))
                    numpy.isfinite(amin(pixseries[i,j,:]))
                    fmin = amin(pixseries[i,j,:])
                    fmax = amax(pixseries[i,j,:])
                except:
                    ugh = 1
                xmin = tmin - (tmax - tmin) / 40
                xmax = tmax + (tmax - tmin) / 40
                ymin = fmin - (fmax - fmin) / 20
                ymax = fmax + (fmax - fmin) / 20
                if kepstat.bitInBitmap(maskimg[i,j],2):
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='lightslategray')
                elif maskimg[i,j] == 0:
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='black')
                else:
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy])
                if j == int(xdim / 2) and i == 0:
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                elif j == 0 and i == int(ydim / 2):
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                else:
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                ptime = time * 1.0
                ptime = numpy.insert(ptime,[0],ptime[0])
                ptime = numpy.append(ptime,ptime[-1])
                pflux = pixseries[i,j,:] * 1.0
                pflux = numpy.insert(pflux,[0],-1000.0)
                pflux = numpy.append(pflux,-1000.0)
                pylab.plot(time,pixseries[i,j,:],color='#0000ff',linestyle='-',linewidth=0.5)
                if not kepstat.bitInBitmap(maskimg[i,j],2):
                    pylab.fill(ptime,pflux,fc='lightslategray',linewidth=0.0,alpha=1.0)
                pylab.fill(ptime,pflux,fc='#FFF380',linewidth=0.0,alpha=1.0)
                if 'loc' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(ymin,ymax)
                if 'glob' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(1.0e-10,numpy.nanmax(pixseries) * 1.05)
                if 'full' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(1.0e-10,ymax * 1.05)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()	
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPPIXSERIES ended at',logfile,verbose)

    return
Example #6
0
def kepflatten(infile,outfile,datacol,errcol,nsig,stepsize,winsize,npoly,niter,ranges,
               plot,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFLATTEN -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errcol='+str(errcol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'winsize='+str(winsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPFLATTEN started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# test winsize > stepsize

    if winsize < stepsize:
        message = 'ERROR -- KEPFLATTEN: winsize must be greater than stepsize'
        status = kepmsg.err(logfile,message,verbose)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPFLATTEN: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            datac = table.field(datacol)
        except:
             message = 'ERROR -- KEPFLATTEN: cannot find or read data column ' + datacol
             status = kepmsg.err(logfile,message,verbose)
    if status == 0:
        try:
            err = table.field(errcol)
        except:
             message = 'WARNING -- KEPFLATTEN: cannot find or read error column ' + errcol
             errcol = 'None'
    if status == 0:
        if errcol.lower() == 'none' or errcol == 'PSF_FLUX_ERR':
            err = datac * cadence
            err = numpy.sqrt(numpy.abs(err)) / cadence
            work1 = numpy.array([table.field('time'), datac, err])
        else:
            work1 = numpy.array([table.field('time'), datac, err])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,2] + bjdref
        indata = work1[:,1]
        inerr = work1[:,0]
        if len(intime) == 0:
             message = 'ERROR -- KEPFLATTEN: one of the input arrays is all NaN'
             status = kepmsg.err(logfile,message,verbose)
       
# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work <= intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+winsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        for n in range(len(tstep1)):
            for i in range(len(intime)-1):
                if intime[i] <= tstep1[n] and intime[i+1] > tstep1[n]:
                    for j in range(i,len(intime)-1):
                        if intime[j] < tstep2[n] and intime[j+1] >= tstep2[n]:
                            cstep1.append(i)
                            cstep2.append(j+1)

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(indata)
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.54,0.93,0.43])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)
        pylab.setp(pylab.gca(),xticklabels=[])

        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        fitarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32')
        sigarray = numpy.zeros((len(indata),len(cstep1)),dtype='float32')
        fitarray[:,:] = numpy.nan
        sigarray[:,:] = numpy.nan
        masterfit = indata * 0.0
        mastersigma = numpy.zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            timeSeries = intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]]
            dataSeries = indata[cstep1[i]:cstep2[i]+1]
            fitTimeSeries = numpy.array([],dtype='float32')
            fitDataSeries = numpy.array([],dtype='float32')
            pinit = [dataSeries.mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                if len(fitarray[cstep1[i]:cstep2[i]+1,i]) > len(pinit):
                    coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                        kepfit.lsqclip(functype,pinit,timeSeries,dataSeries,None,nsig,nsig,niter,
                                       logfile,verbose)
                    fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
                    sigarray[cstep1[i]:cstep2[i]+1,i] = sigma
                    for j in range(len(coeffs)):
                        fitarray[cstep1[i]:cstep2[i]+1,i] += coeffs[j] * timeSeries**j
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    fitarray[cstep1[i]:cstep2[i]+1,i] = 0.0
                    sigarray[cstep1[i]:cstep2[i]+1,i] = 1.0e-10             
                message  = 'WARNING -- KEPFLATTEN: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# find mean fit for each timestamp

    if status == 0:
        for i in range(len(indata)):
            masterfit[i] = scipy.stats.nanmean(fitarray[i,:])
            mastersigma[i] = scipy.stats.nanmean(sigarray[i,:])
        masterfit[-1] = masterfit[-4] #fudge
        masterfit[-2] = masterfit[-4] #fudge
        masterfit[-3] = masterfit[-4] #fudge
        pylab.plot(intime-intime0, masterfit / 10**nrm,'g',lw='3')

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        if plot:
            pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# new data for output file

    if status == 0:
        outdata = indata / masterfit
        outerr = inerr / masterfit

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# plot residual data

    if status == 0 and plot:
        ax = pylab.axes([0.06,0.09,0.93,0.43])

# force tick labels to be absolute rather than relative

    if status == 0 and plot:
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

# clean up y-axis units

    if status == 0:
        pout = copy(outdata)
	ylab = 'Normalized Flux'

# data limits

    if status == 0 and plot:
	ymin = pout.min()
	ymax = pout.max()
	yr = ymax - ymin
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# render plot

    if status == 0 and plot:
        pylab.savefig(re.sub('.fits','.png',outfile))
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
	
# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        work2 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        tn = table.field('time')
        dn = table.field(datacol)
        for i in range(len(table.field(0))):
            if numpy.isfinite(tn[i]) and numpy.isfinite(dn[i]) and numpy.isfinite(err[i]):
                try:
                    work1 = numpy.append(work1,outdata[n])
                    work2 = numpy.append(work2,outerr[n])
                    n += 1
                except:
                    pass
            else:
                work1 = numpy.append(work1,numpy.nan)
                work2 = numpy.append(work2,numpy.nan)

# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# write output file

        try:
            col1 = pyfits.Column(name='DETSAP_FLUX',format='E13.7',array=work1)
            col2 = pyfits.Column(name='DETSAP_FLUX_ERR',format='E13.7',array=work2)
            cols = instr[1].data.columns + col1 + col2
            instr[1] = pyfits.new_table(cols,header=instr[1].header)
            instr.writeto(outfile)
        except ValueError:
            try:
                instr[1].data.field('DETSAP_FLUX')[:] = work1
                instr[1].data.field('DETSAP_FLUX_ERR')[:] = work2
                instr.writeto(outfile)
            except:
                message = 'ERROR -- KEPFLATTEN: cannot add DETSAP_FLUX data to FITS file'
                status = kepmsg.err(logfile,message,verbose)
	
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFLATTEN completed at'
    else:
	    message = '\nKEPFLATTEN aborted at'
    kepmsg.clock(message,logfile,verbose)
Example #7
0
def getWCSs(file,struct,logfile,verbose):

    status = 0
    crpix1 = 0.0
    crpix2 = 0.0
    crval1 = 0.0
    crval2 = 0.0
    cdelt1 = 0.0
    cdelt2 = 0.0
    pc = [0.0,0.0,0.0,0.0]
    try:
        crpix1, status = get(file,struct,'CRPIX1',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRPIX1 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crpix2, status = get(file,struct,'CRPIX2',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRPIX2 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crval1, status = get(file,struct,'CRVAL1',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRVAL1 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crval2, status = get(file,struct,'CRVAL2',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRVAL2 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        cdelt1, status = get(file,struct,'CDELT1',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CDELT1 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        cdelt2, status = get(file,struct,'CDELT2',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CDELT2 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        pc1_1, status = get(file,struct,'PC1_1',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC1_1 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        pc1_2, status = get(file,struct,'PC1_2',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC1_2 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        pc2_1, status = get(file,struct,'PC2_1',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC2_1 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        pc2_2, status = get(file,struct,'PC2_2',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC2_2 in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        pc = numpy.array([[pc1_1,pc1_2],[pc2_1,pc2_2]])
        pc = numpy.linalg.inv(pc)
    except:
        pass
    

    return crpix1, crpix2, crval1, crval2, cdelt1, cdelt2, pc, status
Example #8
0
def kepstitch(infiles,outfile,clobber,verbose,logfile,status): 

# startup parameters

    status = 0
    lct = []; bjd = []

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSTITCH -- '
    call += 'infiles='+infiles+' '
    call += 'outfile='+outfile+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSTITCH started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# parse input file list

    infiles, status = kepio.parselist(infiles,logfile,verbose)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPSTITCH: ' + outfile + ' exists. Use clobber=yes'
	    kepmsg.err(logfile,message,verbose)
	    status = 1

# open output file

    if status == 0:
	    outstr, status = kepio.openfits(infiles[0],'readonly',logfile,verbose)
	    nrows1 = outstr[1].data.shape[0]

# fudge non-compliant FITS keywords with no values

    if status == 0:
	    outstr = kepkey.emptykeys(outstr,file,logfile,verbose)
	    head0 = outstr[0].header
	    head1 = outstr[1].header

# open input files

    nfiles = 0
    if status == 0:
	    for infile in infiles: 
		    instr, status = kepio.openfits(infile,'readonly',logfile,verbose)

# append table data

		    if nfiles > 0:
			    nrows2 = instr[1].data.shape[0]
			    nrows = nrows1 + nrows2
			    outtab = pyfits.new_table(outstr[1].columns,nrows=nrows)
			    for name in outstr[1].columns.names:
                                try:
				    outtab.data.field(name)[nrows1:]=instr[1].data.field(name)
                                except:
                                    message = 'ERROR -- KEPSTITCH: column ' + name + ' missing from some files.'
                                    kepmsg.warn(logfile,message)
                                    pass
			    outstr[1] = outtab
			    outstr[0].header = head0
			    outstr[1].header = head1
			    nrows1 = nrows

# start and stop times of data

                    fitsvers = 1.0
		    lc_start, status = kepkey.get(infile,instr[1],'LC_START',logfile,verbose)
		    lc_end, status = kepkey.get(infile,instr[1],'LC_END',logfile,verbose)
                    try:
                        startbjd = instr[1].header['STARTBJD']
                    except:
                        startbjd, status = kepkey.get(infile,instr[1],'TSTART',logfile,verbose)
                        fitsvers = 2.0                        
                    try:
                        endbjd = instr[1].header['ENDBJD']
                    except:
                        endbjd, status = kepkey.get(infile,instr[1],'TSTOP',logfile,verbose)
                        fitsvers = 2.0
		    lct.append(lc_start); lct.append(lc_end)
		    bjd.append(startbjd); bjd.append(endbjd)

# close input files

		    status = kepio.closefits(instr,logfile,verbose)
		    nfiles += 1

# maxmimum and minimum times in file sample

    if status == 0:
	    lc_start = kepstat.min(lct)
	    lc_end = kepstat.max(lct)
	    startbjd = kepstat.min(bjd)
	    endbjd = kepstat.max(bjd)
	    status = kepkey.change('LC_START',lc_start,outstr[1],outfile,logfile,verbose)
	    status = kepkey.change('LC_END',lc_end,outstr[1],outfile,logfile,verbose)
            if fitsvers == 1.0:
                status = kepkey.change('STARTBJD',startbjd,outstr[1],outfile,logfile,verbose)
                status = kepkey.change('ENDBJD',endbjd,outstr[1],outfile,logfile,verbose)
            else:
                status = kepkey.change('TSTART',startbjd,outstr[1],outfile,logfile,verbose)
                status = kepkey.change('TSTOP',endbjd,outstr[1],outfile,logfile,verbose)                

# comment keyword in output file

    if status == 0:
	    status = kepkey.comment(call,outstr[0],outfile,logfile,verbose)

# close output file

    if status == 0:
	    outstr.writeto(outfile)
	    status = kepio.closefits(outstr,logfile,verbose)

## end time

    if (status == 0):
	    message = 'KEPSTITCH completed at'
    else:
	    message = '\nKEPSTITCH aborted at'
    kepmsg.clock(message,logfile,verbose)
Example #9
0
def kepbls(infile,outfile,datacol,errcol,minper,maxper,mindur,maxdur,nsearch,
           nbins,plot,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    numpy.seterr(all="ignore") 
    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPBLS -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'errcol='+str(errcol)+' '
    call += 'minper='+str(minper)+' '
    call += 'maxper='+str(maxper)+' '
    call += 'mindur='+str(mindur)+' '
    call += 'maxdur='+str(maxdur)+' '
    call += 'nsearch='+str(nsearch)+' '
    call += 'nbins='+str(nbins)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPBLS started at',logfile,verbose)

# is duration greater than one bin in the phased light curve?

    if float(nbins) * maxdur / 24.0 / maxper <= 1.0:
        message = 'WARNING -- KEPBLS: ' + str(maxdur) + ' hours transit duration < 1 phase bin when P = '
        message += str(maxper) + ' days'
        kepmsg.warn(logfile,message)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol), table.field(errcol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,2] + bjdref
        indata = work1[:,1]
        inerr = work1[:,0]

# test whether the period range is sensible

    if status == 0:
        tr = intime[-1] - intime[0]
        if maxper > tr:
            message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data'
            status = kepmsg.err(logfile,message,verbose)

# prepare time series

    if status == 0:
        work1 = intime - intime[0]
        work2 = indata - numpy.mean(indata)
 
# start period search

    if status == 0:
        srMax = numpy.array([],dtype='float32')
        transitDuration = numpy.array([],dtype='float32')
        transitPhase = numpy.array([],dtype='float32')
        dPeriod = (maxper - minper) / nsearch
        trialPeriods = numpy.arange(minper,maxper+dPeriod,dPeriod,dtype='float32')
        complete = 0
        print ' '
        for trialPeriod in trialPeriods:
            fracComplete = float(complete) / float(len(trialPeriods) - 1) * 100.0 
            txt  = '\r' 
            txt += 'Trial period = ' 
            txt += str(int(trialPeriod)) 
            txt += ' days [' 
            txt += str(int(fracComplete)) 
            txt += '% complete]' 
            txt += ' ' * 20
            sys.stdout.write(txt)
            sys.stdout.flush()
            complete += 1
            srMax = numpy.append(srMax,0.0)
            transitDuration = numpy.append(transitDuration,numpy.nan)
            transitPhase = numpy.append(transitPhase,numpy.nan)
            trialFrequency = 1.0 / trialPeriod

# minimum and maximum transit durations in quantized phase units

            duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod),2)
            duration2 = max(int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,duration1 + 1)

# 30 minutes in quantized phase units

            halfHour = int(0.02083333 / trialPeriod * nbins + 1)

# compute folded time series with trial period

            work4 = numpy.zeros((nbins),dtype='float32')
            work5 = numpy.zeros((nbins),dtype='float32')
            phase = numpy.array(((work1 * trialFrequency) - numpy.floor(work1 * trialFrequency)) * float(nbins),dtype='int')
            ptuple = numpy.array([phase, work2, inerr])
            ptuple = numpy.rot90(ptuple,3)
            phsort = numpy.array(sorted(ptuple,key=lambda ph: ph[2]))
            for i in range(nbins):
                elements = numpy.nonzero(phsort[:,2] == float(i))[0]
                work4[i] = numpy.mean(phsort[elements,1])
                work5[i] = math.sqrt(numpy.sum(numpy.power(phsort[elements,0], 2)) / len(elements))

# extend the work arrays beyond nbins by wrapping

            work4 = numpy.append(work4,work4[:duration2])
            work5 = numpy.append(work5,work5[:duration2])

# calculate weights of folded light curve points

            sigmaSum = numpy.nansum(numpy.power(work5,-2))
            omega = numpy.power(work5,-2) / sigmaSum

# calculate weighted phased light curve

            s = omega * work4

# iterate through trial period phase

            for i1 in range(nbins):

# iterate through transit durations

                for duration in range(duration1,duration2+1,int(halfHour)):

# calculate maximum signal residue

                    i2 = i1 + duration
                    sr1 = numpy.sum(numpy.power(s[i1:i2],2))
                    sr2 = numpy.sum(omega[i1:i2])
                    sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2)))
                    if sr > srMax[-1]:
                        srMax[-1] = sr
                        transitDuration[-1] = float(duration)
                        transitPhase[-1] = float((i1 + i2) / 2)

# normalize maximum signal residue curve

        bestSr = numpy.max(srMax)
        bestTrial = numpy.nonzero(srMax == bestSr)[0][0]
        srMax /= bestSr
        transitDuration *= trialPeriods / 24.0 
        BJD0 = numpy.array(transitPhase * trialPeriods / nbins,dtype='float64') + intime[0] - 2454833.0
        print '\n'

# clean up x-axis unit

    if status == 0:
	ptime = copy(trialPeriods)
	xlab = 'Trial Period (days)'

# clean up y-axis units

    if status == 0:
        pout = copy(srMax)
	ylab = 'Normalized Signal Residue'

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.10,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)

# plot curve

    if status == 0 and plot:
        pylab.plot(ptime[1:-1],pout[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        pylab.fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            pylab.ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            pylab.ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if status == 0 and plot:
            if cmdLine: 
                pylab.show()
            else: 
                pylab.ion()
                pylab.plot([])
                pylab.ioff()
	
# append new BLS data extension to the output file

    if status == 0:
        col1 = Column(name='PERIOD',format='E',unit='days',array=trialPeriods)
        col2 = Column(name='BJD0',format='D',unit='BJD - 2454833',array=BJD0)
        col3 = Column(name='DURATION',format='E',unit='hours',array=transitDuration)
        col4 = Column(name='SIG_RES',format='E',array=srMax)
        cols = ColDefs([col1,col2,col3,col4])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period'
        instr[-1].header.cards['TTYPE2'].comment = 'column title: trial mid-transit zero-point'
        instr[-1].header.cards['TTYPE3'].comment = 'column title: trial transit duration'
        instr[-1].header.cards['TTYPE4'].comment = 'column title: normalized signal residue'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float64'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT1'].comment = 'column units: days'
        instr[-1].header.cards['TUNIT2'].comment = 'column units: BJD - 2454833'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: hours'
        instr[-1].header.update('EXTNAME','BLS','extension name')
        instr[-1].header.update('PERIOD',trialPeriods[bestTrial],'most significant trial period [d]')
        instr[-1].header.update('BJD0',BJD0[bestTrial] + 2454833.0,'time of mid-transit [BJD]')
        instr[-1].header.update('TRANSDUR',transitDuration[bestTrial],'transit duration [hours]')
        instr[-1].header.update('SIGNRES',srMax[bestTrial] * bestSr,'maximum signal residue')
    
# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    


# print best trial period results

    if status == 0:
        print '      Best trial period = %.5f days' % trialPeriods[bestTrial]
        print '    Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] + 2454833.0)
        print '       Transit duration = %.5f hours' % transitDuration[bestTrial]
        print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr)

# end time

    if (status == 0):
	    message = 'KEPBLS completed at'
    else:
	    message = '\nKEPBLS aborted at'
    kepmsg.clock(message,logfile,verbose)
Example #10
0
def lsqclip(functype,pinit,x,y,yerr,rej_lo,rej_hi,niter,logfile,verbose):

# functype = unctional form
# pinit = initial guess for parameters
# x = list of x data
# y = list of y data
# yerr = list of 1-sigma y errors
# order = polynomial order
# rej_lo = lower rejection threshold (units=sigma)
# rej_hi = upper rejection threshold (units=sugma)
# niter = number of sigma-clipping iterations

    npts = []
    iiter = 0
    iterstatus = 1
    status = 0

# error catching

    if (len(x) == 0):
	status = kepmsg.exit('ERROR -- KEPFIT.LSQCLIP: x data array is empty')
    if (len(y) == 0):
	status = kepmsg.exit('ERROR -- KEPFIT.LSQCLIP: y data array is empty')
    if (len(x) < len(pinit)):
	kepmsg.warn(logfile,'WARNING -- KEPFIT.LSQCLIP: no degrees of freedom')
        

# sigma-clipping iterations

    while (iiter < niter and len(x) > len(pinit) and iterstatus > 0):
	iterstatus = 0
	tmpx = []
	tmpy = []
	tmpyerr = []
	npts.append(len(x))
	coeffs,errors,covar,sigma,chi2,dof,fit,plotx,ploty,status = \
	    leastsquare(functype,pinit,x,y,yerr,logfile,verbose)
	pinit = coeffs

# point-by-point sigma-clipping test

	for ix in range(npts[iiter]):
	    if (y[ix] - fit[ix] < rej_hi * sigma and
		fit[ix] - y[ix] < rej_lo * sigma):
		tmpx.append(x[ix])
		tmpy.append(y[ix])
		if (yerr != None): tmpyerr.append(yerr[ix])
	    else:
		iterstatus = 1
	x = scipy.array(tmpx)
	y = scipy.array(tmpy)
	if (yerr != None): yerr = scipy.array(tmpyerr)
	iiter += 1

# fudge scalar models

#    for i in range(len(plotx)):
	

# coeffs = best fit coefficients
# covar = covariance matrix
# iiter = number of sigma clipping iteration before convergence

    return coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status
Example #11
0
def kepfold(infile,
            outfile,
            period,
            phasezero,
            bindata,
            binmethod,
            threshold,
            niter,
            nbins,
            rejqual,
            plottype,
            plotlab,
            clobber,
            verbose,
            logfile,
            status,
            cmdLine=False):

    # startup parameters

    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 18
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 2.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPFOLD -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'period=' + str(period) + ' '
    call += 'phasezero=' + str(phasezero) + ' '
    binit = 'n'
    if (bindata): binit = 'y'
    call += 'bindata=' + binit + ' '
    call += 'binmethod=' + binmethod + ' '
    call += 'threshold=' + str(threshold) + ' '
    call += 'niter=' + str(niter) + ' '
    call += 'nbins=' + str(nbins) + ' '
    qflag = 'n'
    if (rejqual): qflag = 'y'
    call += 'rejqual=' + qflag + ' '
    call += 'plottype=' + plottype + ' '
    call += 'plotlab=' + plotlab + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPFOLD started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# input data

    if status == 0:
        table = instr[1].data
        incards = instr[1].header.cards
        try:
            sap = instr[1].data.field('SAP_FLUX')
        except:
            try:
                sap = instr[1].data.field('ap_raw_flux')
            except:
                sap = zeros(len(table.field(0)))
        try:
            saperr = instr[1].data.field('SAP_FLUX_ERR')
        except:
            try:
                saperr = instr[1].data.field('ap_raw_err')
            except:
                saperr = zeros(len(table.field(0)))
        try:
            pdc = instr[1].data.field('PDCSAP_FLUX')
        except:
            try:
                pdc = instr[1].data.field('ap_corr_flux')
            except:
                pdc = zeros(len(table.field(0)))
        try:
            pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR')
        except:
            try:
                pdcerr = instr[1].data.field('ap_corr_err')
            except:
                pdcerr = zeros(len(table.field(0)))
        try:
            cbv = instr[1].data.field('CBVSAP_FLUX')
        except:
            cbv = zeros(len(table.field(0)))
            if 'cbv' in plottype:
                txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            det = instr[1].data.field('DETSAP_FLUX')
        except:
            det = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            deterr = instr[1].data.field('DETSAP_FLUX_ERR')
        except:
            deterr = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            quality = instr[1].data.field('SAP_QUALITY')
        except:
            quality = zeros(len(table.field(0)))
            if qualflag:
                txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column'
                kepmsg.warn(logfile, txt)
    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
        barytime1 = copy(barytime)

# filter out NaNs and quality > 0

    work1 = []
    work2 = []
    work3 = []
    work4 = []
    work5 = []
    work6 = []
    work8 = []
    work9 = []
    if status == 0:
        if 'sap' in plottype:
            datacol = copy(sap)
            errcol = copy(saperr)
        if 'pdc' in plottype:
            datacol = copy(pdc)
            errcol = copy(pdcerr)
        if 'cbv' in plottype:
            datacol = copy(cbv)
            errcol = copy(saperr)
        if 'det' in plottype:
            datacol = copy(det)
            errcol = copy(deterr)
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i])
                    and datacol[i] != 0.0 and numpy.isfinite(errcol[i])
                    and errcol[i] > 0.0):
                if rejqual and quality[i] == 0:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
                elif not rejqual:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
        barytime = array(work1, dtype='float64')
        sap = array(work2, dtype='float32') / cadenom
        saperr = array(work3, dtype='float32') / cadenom
        pdc = array(work4, dtype='float32') / cadenom
        pdcerr = array(work5, dtype='float32') / cadenom
        cbv = array(work6, dtype='float32') / cadenom
        det = array(work8, dtype='float32') / cadenom
        deterr = array(work9, dtype='float32') / cadenom

# calculate phase

    if status == 0:
        if phasezero < bjdref:
            phasezero += bjdref
        date1 = (barytime1 + bjdref - phasezero)
        phase1 = (date1 / period) - floor(date1 / period)
        date2 = (barytime + bjdref - phasezero)
        phase2 = (date2 / period) - floor(date2 / period)
        phase2 = array(phase2, 'float32')

# sort phases

    if status == 0:
        ptuple = []
        phase3 = []
        sap3 = []
        saperr3 = []
        pdc3 = []
        pdcerr3 = []
        cbv3 = []
        cbverr3 = []
        det3 = []
        deterr3 = []
        for i in range(len(phase2)):
            ptuple.append([
                phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i],
                saperr[i], det[i], deterr[i]
            ])
        phsort = sorted(ptuple, key=lambda ph: ph[0])
        for i in range(len(phsort)):
            phase3.append(phsort[i][0])
            sap3.append(phsort[i][1])
            saperr3.append(phsort[i][2])
            pdc3.append(phsort[i][3])
            pdcerr3.append(phsort[i][4])
            cbv3.append(phsort[i][5])
            cbverr3.append(phsort[i][6])
            det3.append(phsort[i][7])
            deterr3.append(phsort[i][8])
        phase3 = array(phase3, 'float32')
        sap3 = array(sap3, 'float32')
        saperr3 = array(saperr3, 'float32')
        pdc3 = array(pdc3, 'float32')
        pdcerr3 = array(pdcerr3, 'float32')
        cbv3 = array(cbv3, 'float32')
        cbverr3 = array(cbverr3, 'float32')
        det3 = array(det3, 'float32')
        deterr3 = array(deterr3, 'float32')

# bin phases

    if status == 0 and bindata:
        work1 = array([sap3[0]], 'float32')
        work2 = array([saperr3[0]], 'float32')
        work3 = array([pdc3[0]], 'float32')
        work4 = array([pdcerr3[0]], 'float32')
        work5 = array([cbv3[0]], 'float32')
        work6 = array([cbverr3[0]], 'float32')
        work7 = array([det3[0]], 'float32')
        work8 = array([deterr3[0]], 'float32')
        phase4 = array([], 'float32')
        sap4 = array([], 'float32')
        saperr4 = array([], 'float32')
        pdc4 = array([], 'float32')
        pdcerr4 = array([], 'float32')
        cbv4 = array([], 'float32')
        cbverr4 = array([], 'float32')
        det4 = array([], 'float32')
        deterr4 = array([], 'float32')
        dt = 1.0 / nbins
        nb = 0.0
        rng = numpy.append(phase3, phase3[0] + 1.0)
        for i in range(len(rng)):
            if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt:
                if len(work1) > 0:
                    phase4 = append(phase4, (nb + 0.5) * dt)
                    if (binmethod == 'mean'):
                        sap4 = append(sap4, kepstat.mean(work1))
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        pdc4 = append(pdc4, kepstat.mean(work3))
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        cbv4 = append(cbv4, kepstat.mean(work5))
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        det4 = append(det4, kepstat.mean(work7))
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                    elif (binmethod == 'median'):
                        sap4 = append(sap4, kepstat.median(work1, logfile))
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        pdc4 = append(pdc4, kepstat.median(work3, logfile))
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        cbv4 = append(cbv4, kepstat.median(work5, logfile))
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        det4 = append(det4, kepstat.median(work7, logfile))
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                    else:
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2,
                                           threshold,threshold,niter,logfile,False)
                        sap4 = append(sap4, coeffs[0])
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4,
                                           threshold,threshold,niter,logfile,False)
                        pdc4 = append(pdc4, coeffs[0])
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6,
                                           threshold,threshold,niter,logfile,False)
                        cbv4 = append(cbv4, coeffs[0])
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8,
                                           threshold,threshold,niter,logfile,False)
                        det4 = append(det4, coeffs[0])
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                work1 = array([], 'float32')
                work2 = array([], 'float32')
                work3 = array([], 'float32')
                work4 = array([], 'float32')
                work5 = array([], 'float32')
                work6 = array([], 'float32')
                work7 = array([], 'float32')
                work8 = array([], 'float32')
                nb += 1.0
            else:
                work1 = append(work1, sap3[i])
                work2 = append(work2, saperr3[i])
                work3 = append(work3, pdc3[i])
                work4 = append(work4, pdcerr3[i])
                work5 = append(work5, cbv3[i])
                work6 = append(work6, cbverr3[i])
                work7 = append(work7, det3[i])
                work8 = append(work8, deterr3[i])

# update HDU1 for output file

    if status == 0:

        cols = (instr[1].columns +
                ColDefs([Column(name='PHASE', format='E', array=phase1)]))
        instr[1] = pyfits.new_table(cols)
        instr[1].header.cards[
            'TTYPE' +
            str(len(instr[1].columns))].comment = 'column title: phase'
        instr[1].header.cards[
            'TFORM' +
            str(len(instr[1].columns))].comment = 'data type: float32'
        for i in range(len(incards)):
            if incards[i].key not in list(instr[1].header.keys()):
                instr[1].header.update(incards[i].key, incards[i].value,
                                       incards[i].comment)
            else:
                instr[1].header.cards[
                    incards[i].key].comment = incards[i].comment
        instr[1].header.update('PERIOD', period,
                               'period defining the phase [d]')
        instr[1].header.update('BJD0', phasezero, 'time of phase zero [BJD]')

# write new phased data extension for output file

    if status == 0 and bindata:
        col1 = Column(name='PHASE', format='E', array=phase4)
        col2 = Column(name='SAP_FLUX',
                      format='E',
                      unit='e/s',
                      array=sap4 / cadenom)
        col3 = Column(name='SAP_FLUX_ERR',
                      format='E',
                      unit='e/s',
                      array=saperr4 / cadenom)
        col4 = Column(name='PDC_FLUX',
                      format='E',
                      unit='e/s',
                      array=pdc4 / cadenom)
        col5 = Column(name='PDC_FLUX_ERR',
                      format='E',
                      unit='e/s',
                      array=pdcerr4 / cadenom)
        col6 = Column(name='CBV_FLUX',
                      format='E',
                      unit='e/s',
                      array=cbv4 / cadenom)
        col7 = Column(name='DET_FLUX', format='E', array=det4 / cadenom)
        col8 = Column(name='DET_FLUX_ERR', format='E', array=deterr4 / cadenom)
        cols = ColDefs([col1, col2, col3, col4, col5, col6, col7, col8])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: phase'
        instr[-1].header.cards[
            'TTYPE2'].comment = 'column title: simple aperture photometry'
        instr[-1].header.cards[
            'TTYPE3'].comment = 'column title: SAP 1-sigma error'
        instr[-1].header.cards[
            'TTYPE4'].comment = 'column title: pipeline conditioned photometry'
        instr[-1].header.cards[
            'TTYPE5'].comment = 'column title: PDC 1-sigma error'
        instr[-1].header.cards[
            'TTYPE6'].comment = 'column title: cotrended basis vector photometry'
        instr[-1].header.cards[
            'TTYPE7'].comment = 'column title: Detrended aperture photometry'
        instr[-1].header.cards[
            'TTYPE8'].comment = 'column title: DET 1-sigma error'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM5'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM6'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM7'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM8'].comment = 'column type: float32'
        instr[-1].header.cards[
            'TUNIT2'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT3'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT4'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT5'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT6'].comment = 'column units: electrons per second'
        instr[-1].header.update('EXTNAME', 'FOLDED', 'extension name')
        instr[-1].header.update('PERIOD', period,
                                'period defining the phase [d]')
        instr[-1].header.update('BJD0', phasezero, 'time of phase zero [BJD]')
        instr[-1].header.update('BINMETHD', binmethod, 'phase binning method')
        if binmethod == 'sigclip':
            instr[-1].header.update('THRSHOLD', threshold,
                                    'sigma-clipping threshold [sigma]')
            instr[-1].header.update('NITER', niter,
                                    'max number of sigma-clipping iterations')

# history keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)
        instr.writeto(outfile)

# clean up x-axis unit

    if status == 0:
        ptime1 = array([], 'float32')
        ptime2 = array([], 'float32')
        pout1 = array([], 'float32')
        pout2 = array([], 'float32')
        if bindata:
            work = sap4
            if plottype == 'pdc':
                work = pdc4
            if plottype == 'cbv':
                work = cbv4
            if plottype == 'det':
                work = det4
            for i in range(len(phase4)):
                if (phase4[i] > 0.5):
                    ptime2 = append(ptime2, phase4[i] - 1.0)
                    pout2 = append(pout2, work[i])
            ptime2 = append(ptime2, phase4)
            pout2 = append(pout2, work)
            for i in range(len(phase4)):
                if (phase4[i] <= 0.5):
                    ptime2 = append(ptime2, phase4[i] + 1.0)
                    pout2 = append(pout2, work[i])
        work = sap3
        if plottype == 'pdc':
            work = pdc3
        if plottype == 'cbv':
            work = cbv3
        if plottype == 'det':
            work = det3
        for i in range(len(phase3)):
            if (phase3[i] > 0.5):
                ptime1 = append(ptime1, phase3[i] - 1.0)
                pout1 = append(pout1, work[i])
        ptime1 = append(ptime1, phase3)
        pout1 = append(pout1, work)
        for i in range(len(phase3)):
            if (phase3[i] <= 0.5):
                ptime1 = append(ptime1, phase3[i] + 1.0)
                pout1 = append(pout1, work[i])
    xlab = 'Orbital Phase ($\phi$)'

    # clean up y-axis units

    if status == 0:

        nrm = len(str(int(pout1[isfinite(pout1)].max()))) - 1

        pout1 = pout1 / 10**nrm
        pout2 = pout2 / 10**nrm
        if nrm == 0:
            ylab = plotlab
        else:
            ylab = '10$^%d$ %s' % (nrm, plotlab)

# data limits

        xmin = ptime1.min()
        xmax = ptime1.max()
        ymin = pout1[isfinite(pout1)].min()
        ymax = pout1[isfinite(pout1)].max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime1 = insert(ptime1, [0], [ptime1[0]])
        ptime1 = append(ptime1, [ptime1[-1]])
        pout1 = insert(pout1, [0], [0.0])
        pout1 = append(pout1, 0.0)
        if bindata:
            ptime2 = insert(ptime2, [0], ptime2[0] - 1.0 / nbins)
            ptime2 = insert(ptime2, [0], ptime2[0])
            ptime2 = append(
                ptime2, [ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins])
            pout2 = insert(pout2, [0], [pout2[-1]])
            pout2 = insert(pout2, [0], [0.0])
            pout2 = append(pout2, [pout2[2], 0.0])

# plot new light curve

    if status == 0 and plottype != 'none':
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 18,
                'legend.fontsize': 18,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            pylab.rcParams.update(params)
        except:
            print('ERROR -- KEPFOLD: install latex for scientific plotting')
            status = 1
    if status == 0 and plottype != 'none':
        pylab.figure(figsize=[17, 7])
        pylab.clf()
        ax = pylab.axes([0.06, 0.11, 0.93, 0.86])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)
        if bindata:
            pylab.fill(ptime2,
                       pout2,
                       color=fcolor,
                       linewidth=0.0,
                       alpha=falpha)
        else:
            if 'det' in plottype:
                pylab.fill(ptime1,
                           pout1,
                           color=fcolor,
                           linewidth=0.0,
                           alpha=falpha)
        pylab.plot(ptime1,
                   pout1,
                   color=lcolor,
                   linestyle='',
                   linewidth=lwidth,
                   marker='.')
        if bindata:
            pylab.plot(ptime2[1:-1],
                       pout2[1:-1],
                       color='r',
                       linestyle='-',
                       linewidth=lwidth,
                       marker='')
        xlabel(xlab, {'color': 'k'})
        ylabel(ylab, {'color': 'k'})
        xlim(-0.49999, 1.49999)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
#            ylim(0.96001,1.03999)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        grid()
        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# stop time

    kepmsg.clock('KEPFOLD ended at: ', logfile, verbose)
Example #12
0
def kephalophot(infile,
                outfile,
                plotfile,
                plottype,
                filter,
                function,
                cutoff,
                clobber,
                verbose,
                logfile,
                status,
                cmdLine=False):

    # input arguments

    status = 0
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPHALOPHOT -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'plotfile=' + plotfile + ' '
    call += 'plottype=' + plottype + ' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter=' + filt + ' '
    call += 'function=' + function + ' '
    call += 'cutoff=' + str(cutoff) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPHALOPHOT started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPHALOPHOT: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(
            infile, logfile, verbose)

# print target data

    if status == 0:
        print('')
        print('      KepID:  %s' % kepid)
        print(' RA (J2000):  %s' % ra)
        print('Dec (J2000): %s' % dec)
        print('     KepMag:  %s' % kepmag)
        print('   SkyGroup:    %2s' % skygroup)
        print('     Season:    %2s' % str(season))
        print('    Channel:    %2s' % channel)
        print('     Module:    %2s' % module)
        print('     Output:     %1s' % output)
        print('')

# how many quality = 0 rows? how many pixels?

    if status == 0:
        np = ydim * xdim
        nrows = len(fluxpixels)
        npts = 0
        for i in range(nrows):
            if qual[i] < 1e4 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = zeros((npts, np))
        errseries = zeros((npts, np))
        # pixseries = empty((ydim,xdim,npts))
        # errseries = empty((ydim,xdim,npts))

# construct output light curves

    if status == 0:
        for i in range(np):
            npts = 0
            for j in range(nrows):
                if qual[j] < 1e4 and \
                numpy.isfinite(barytime[j]) and \
                numpy.isfinite(fluxpixels[j,i]):
                    time[npts] = barytime[j]
                    timecorr[npts] = tcorr[j]
                    cadenceno[npts] = cadno[j]
                    quality[npts] = qual[j]
                    pixseries[npts, i] = fluxpixels[j, i]
                    errseries[npts, i] = errpixels[j, i]
                    npts += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose)
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale],
                                linspace(0, dx - 1, dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0, dx - 1, dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

                # convolve data

                if status == 0:
                    convolved = convolve(padded, filtfunc, 'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]

# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,
                              j, :] = pixseries[i, j, :] - outdata + outmedian

# construct weighted time series
    if status == 0:
        wgt = numpy.ones((np, 3))
        twgt = numpy.ones((np, 3))
        wgt /= sum(wgt, axis=0)
        satlvl = 0.8 * numpy.max(numpy.max(pixseries, axis=1))
        brk1 = 9.7257203
        brk2 = 45.
        ind1 = where(time - time[0] < brk1)
        ind2 = where((time - time[0] >= brk1) & (time - time[0] < brk2))
        ind3 = where(time - time[0] >= brk2)
        z = numpy.array([0.0, 0.0, 0.0])
        for i in range(np):
            if max(pixseries[ind1, i].flatten()) > satlvl or max(
                    pixseries[ind1, i].flatten()) <= 100:
                wgt[i, 0] = 0
                z[0] += 1
            if max(pixseries[ind2, i].flatten()) > satlvl or max(
                    pixseries[ind2, i].flatten()) <= 100:
                wgt[i, 1] = 0
                z[1] += 1
            if max(pixseries[ind3, i].flatten()) > satlvl or max(
                    pixseries[ind3, i].flatten()) <= 100:
                wgt[i, 2] = 0
                z[2] += 1
        print(z)
        print(np - z)
        sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten()
        sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten()
        sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten()
        sf1 /= numpy.median(sf1)
        sf2 /= numpy.median(sf2)
        sf3 /= numpy.median(sf3)
        originalflux = numpy.concatenate([sf1, sf2, sf3])

        #        a=numpy.array([0.0,0.0,0.0])
        #        t=0
        #        ca = numpy.array([0.0,0.0,0.0])
        #        ct = 0
        #        sig1 = numpy.std(sf1)
        #        sig2 = numpy.std(sf2)
        #        sig3 = numpy.std(sf3)
        #        while 1:
        #            j = int(numpy.floor(numpy.random.random()*np))
        #            if sum(wgt[j,:]) == 0: continue
        #            if ct == 1000:
        #                print(ca)
        #                if ca[0] < 333 and ca[1] < 333 and ca[2] < 333: break
        #                ca = numpy.array([0.0,0.0,0.0])
        #                ct = 0
        #            t += 1
        #            ct += 1
        #            wgt /= sum(wgt,axis=0)
        #            twgt=copy(wgt)
        #            twgt[j,:]*=numpy.random.normal(1.0,0.05,3)
        #            twgt /= sum(twgt,axis=0)
        #            tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten()
        #            tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten()
        #            tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten()
        #            tsf1 /= numpy.median(tsf1)
        #            tsf2 /= numpy.median(tsf2)
        #            tsf3 /= numpy.median(tsf3)
        #            tsig1 = numpy.std(tsf1)
        #            tsig2 = numpy.std(tsf2)
        #            tsig3 = numpy.std(tsf3)
        #            if tsig1 < sig1:
        #                wgt[:,0] = twgt[:,0]
        #                sig1 = tsig1
        #                a[0] += 1
        #                ca[0] += 1
        #            if tsig2 < sig2:
        #                wgt[:,1] = twgt[:,1]
        #                sig2 = tsig2
        #                a[1] += 1
        #                ca[1] += 1
        #            if tsig3 < sig3:
        #                wgt[:,2] = twgt[:,2]
        #                sig3 = tsig3
        #                a[2] += 1
        #                ca[2] += 1
        #        print(100*a/t)
        #        sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten()
        #        sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten()
        #        sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten()
        #        sf1 /= numpy.median(sf1)
        #        sf2 /= numpy.median(sf2)
        #        sf3 /= numpy.median(sf3)
        #
        #        a=numpy.array([0.0,0.0,0.0])
        #        t=0
        #        ca = numpy.array([0.0,0.0,0.0])
        #        ct = 0
        #        sig1 = sum(numpy.fabs(sf1[1:]-sf1[:-1]))
        #        sig2 = sum(numpy.fabs(sf2[1:]-sf2[:-1]))
        #        sig3 = sum(numpy.fabs(sf3[1:]-sf3[:-1]))
        #        while 1:
        #            j = int(numpy.floor(numpy.random.random()*np))
        #            if sum(wgt[j,:]) == 0: continue
        #            if ct == 1000:
        #                print(ca)
        #                if ca[0] < 167 and ca[1] < 167 and ca[2] < 167: break#
        #                ca = numpy.array([0.0,0.0,0.0])
        #                ct = 0
        #            t += 1
        #            ct += 1
        #            wgt /= sum(wgt,axis=0)
        #            twgt=copy(wgt)
        #            twgt[j,:]*=numpy.random.normal(1.0,0.05,3)
        #            twgt /= sum(twgt,axis=0)
        #            tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten()
        #            tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten()
        #            tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten()
        #            tsf1 /= numpy.median(tsf1)
        #            tsf2 /= numpy.median(tsf2)
        #            tsf3 /= numpy.median(tsf3)
        #            tsig1 = sum(numpy.fabs(tsf1[1:]-tsf1[:-1]))
        #            tsig2 = sum(numpy.fabs(tsf2[1:]-tsf2[:-1]))
        #            tsig3 = sum(numpy.fabs(tsf3[1:]-tsf3[:-1]))
        #            if tsig1 < sig1:
        #                wgt[:,0] = twgt[:,0]
        #                sig1 = tsig1
        #                a[0] += 1
        #                ca[0] += 1
        #            if tsig2 < sig2:
        #                wgt[:,1] = twgt[:,1]
        #                sig2 = tsig2
        #                a[1] += 1
        #                ca[1] += 1
        #            if tsig3 < sig3:
        #                wgt[:,2] = twgt[:,2]
        #                sig3 = tsig3
        #                a[2] += 1
        #                ca[2] += 1
        #        print(100*a/t)
        #        sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten()
        #        sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten()
        #        sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten()
        #        sf1 /= numpy.median(sf1)
        #        sf2 /= numpy.median(sf2)
        #        sf3 /= numpy.median(sf3)

        a = numpy.array([0.0, 0.0, 0.0])
        t = 0
        ca = numpy.array([0.0, 0.0, 0.0])
        ct = 0
        sig1 = sum(numpy.fabs(sf1[2:] - 2 * sf1[1:-1] + sf1[:-2]))
        sig2 = sum(numpy.fabs(sf2[2:] - 2 * sf2[1:-1] + sf2[:-2]))
        sig3 = sum(numpy.fabs(sf3[2:] - 2 * sf3[1:-1] + sf3[:-2]))
        while 1:
            j = int(numpy.floor(numpy.random.random() * np))
            if sum(wgt[j, :]) == 0: continue
            if ct == 1000:
                print(ca)
                if ca[0] < 20 and ca[1] < 20 and ca[2] < 20: break
                if t > 1000000: break
                ca = numpy.array([0.0, 0.0, 0.0])
                ct = 0
            t += 1
            ct += 1
            wgt /= sum(wgt, axis=0)
            twgt = copy(wgt)
            twgt[j, :] *= numpy.random.normal(1.0, 0.05, 3)
            twgt /= sum(twgt, axis=0)
            tsf1 = numpy.dot(pixseries[ind1, :], twgt[:, 0]).flatten()
            tsf2 = numpy.dot(pixseries[ind2, :], twgt[:, 1]).flatten()
            tsf3 = numpy.dot(pixseries[ind3, :], twgt[:, 2]).flatten()
            tsf1 /= numpy.median(tsf1)
            tsf2 /= numpy.median(tsf2)
            tsf3 /= numpy.median(tsf3)
            tsig1 = sum(numpy.fabs(tsf1[2:] - 2 * tsf1[1:-1] + tsf1[:-2]))
            tsig2 = sum(numpy.fabs(tsf2[2:] - 2 * tsf2[1:-1] + tsf2[:-2]))
            tsig3 = sum(numpy.fabs(tsf3[2:] - 2 * tsf3[1:-1] + tsf3[:-2]))
            if tsig1 < sig1:
                wgt[:, 0] = twgt[:, 0]
                sig1 = tsig1
                a[0] += 1
                ca[0] += 1
            if tsig2 < sig2:
                wgt[:, 1] = twgt[:, 1]
                sig2 = tsig2
                a[1] += 1
                ca[1] += 1
            if tsig3 < sig3:
                wgt[:, 2] = twgt[:, 2]
                sig3 = tsig3
                a[2] += 1
                ca[2] += 1
        print(100 * a / t)
        sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten()
        sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten()
        sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten()
        sf1 /= numpy.median(sf1)
        sf2 /= numpy.median(sf2)
        sf3 /= numpy.median(sf3)

        finalflux = numpy.concatenate([sf1, sf2, sf3])

# construct output file

    if status == 0:
        instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        status = kepkey.history(call, instruct[0], outfile, logfile, verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(
            Column(name='TIME',
                   format='D',
                   unit='BJD - 2454833',
                   disp='D12.7',
                   array=time))
        cols.append(
            Column(name='TIMECORR',
                   format='E',
                   unit='d',
                   disp='E13.6',
                   array=timecorr))
        cols.append(
            Column(name='CADENCENO', format='J', disp='I10', array=cadenceno))
        cols.append(Column(name='QUALITY', format='J', array=quality))
        cols.append(
            Column(name='ORGFLUX',
                   format='E',
                   disp='E13.6',
                   array=originalflux))
        cols.append(
            Column(name='FLUX', format='E', disp='E13.6', array=finalflux))
        # for i in range(ydim):
        #     for j in range(xdim):
        #         colname = 'COL%d_ROW%d' % (i+column,j+row)
        #         cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT', True, 'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension')
        except:
            status = 0
        try:
            hdu1.header.update(
                'EXTVER', instruct[1].header['EXTVER'],
                'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'],
                               'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'],
                               'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT', instruct[1].header['OBJECT'],
                               'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'],
                               'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS', instruct[1].header['RADESYS'],
                               'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'],
                               '[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'],
                               '[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'],
                               'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'],
                               'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'],
                               'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'],
                               'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'],
                               'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'],
                               'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'],
                               'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART', instruct[1].header['TSTART'],
                               'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP', instruct[1].header['TSTOP'],
                               'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START', instruct[1].header['LC_START'],
                               'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END', instruct[1].header['LC_END'],
                               'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'],
                               '[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'],
                               '[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'],
                               '[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC', instruct[1].header['DEADC'],
                               'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'],
                               'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'],
                               '[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'],
                               '[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'],
                               '[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME', instruct[1].header['READTIME'],
                               '[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'],
                               '[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'],
                               'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'],
                               '[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'],
                               'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END', instruct[1].header['DATE-END'],
                               'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'],
                               'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'],
                               'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'],
                               'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN', instruct[1].header['GAIN'],
                               '[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS', instruct[1].header['READNOIS'],
                               '[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'],
                               'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'],
                               'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'],
                               '[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, instruct[2].data, instruct[2].header)
        wgt1 = numpy.reshape(wgt[:, 0], (ydim, xdim))
        wgt2 = numpy.reshape(wgt[:, 1], (ydim, xdim))
        wgt3 = numpy.reshape(wgt[:, 2], (ydim, xdim))
        hdu3 = ImageHDU(data=wgt1, header=instruct[2].header, name='WEIGHTS1')
        hdu4 = ImageHDU(data=wgt2, header=instruct[2].header, name='WEIGHTS2')
        hdu5 = ImageHDU(data=wgt3, header=instruct[2].header, name='WEIGHTS3')
        pyfits.append(outfile, hdu3.data, hdu3.header)
        pyfits.append(outfile, hdu4.data, hdu4.header)
        pyfits.append(outfile, hdu5.data, hdu5.header)
        status = kepio.closefits(instruct, logfile, verbose)
    else:
        message = 'WARNING -- KEPHALOPHOT: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile, message)

# plot style

    if status == 0:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.0,
                'axes.labelsize': 32,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 8,
                'legend.fontsize': 8,
                'xtick.labelsize': 12,
                'ytick.labelsize': 12
            }
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
        pylab.figure(num=None, figsize=[12, 12])
        pylab.clf()
        dx = 0.93  #/ xdim
        dy = 0.94  #/ ydim
        ax = pylab.axes([0.06, 0.05, 0.93, 0.94])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color': 'k'})
        pylab.ylabel('arbitrary flux', {'color': 'k'})
        tmin = amin(time)
        tmax = amax(time)
        try:
            numpy.isfinite(amin(finalflux))
            numpy.isfinite(amin(finalflux))
            fmin = amin(finalflux)
            fmax = amax(finalflux)
        except:
            ugh = 1
        xmin = tmin - (tmax - tmin) / 40
        xmax = tmax + (tmax - tmin) / 40
        ymin = fmin - (fmax - fmin) / 20
        ymax = fmax + (fmax - fmin) / 20
        pylab.axes([0.06, 0.05, dx, dy])
        pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
        ptime = time * 1.0
        ptime = numpy.insert(ptime, [0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        pflux = finalflux * 1.0
        pflux = numpy.insert(pflux, [0], -1000.0)
        pflux = numpy.append(pflux, -1000.0)
        pylab.plot(time,
                   finalflux,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=0.5)
        pylab.fill(ptime, pflux, fc='#FFF380', linewidth=0.0, alpha=1.0)
        if 'loc' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(ymin, ymax)
        if 'glob' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05)
        if 'full' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(1.0e-10, ymax * 1.05)

# render plot

        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPHALOPHOT ended at', logfile, verbose)

    return
Example #13
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Example #14
0
def lsqclip(functype, pinit, x, y, yerr, rej_lo, rej_hi, niter, logfile,
            verbose):

    # functype = unctional form
    # pinit = initial guess for parameters
    # x = list of x data
    # y = list of y data
    # yerr = list of 1-sigma y errors
    # order = polynomial order
    # rej_lo = lower rejection threshold (units=sigma)
    # rej_hi = upper rejection threshold (units=sugma)
    # niter = number of sigma-clipping iterations

    npts = []
    iiter = 0
    iterstatus = 1
    status = 0

    # error catching

    if (len(x) == 0):
        status = kepmsg.exit('ERROR -- KEPFIT.LSQCLIP: x data array is empty')
    if (len(y) == 0):
        status = kepmsg.exit('ERROR -- KEPFIT.LSQCLIP: y data array is empty')
    if (len(x) < len(pinit)):
        kepmsg.warn(logfile,
                    'WARNING -- KEPFIT.LSQCLIP: no degrees of freedom')

# sigma-clipping iterations

    while (iiter < niter and len(x) > len(pinit) and iterstatus > 0):
        iterstatus = 0
        tmpx = []
        tmpy = []
        tmpyerr = []
        npts.append(len(x))
        coeffs,errors,covar,sigma,chi2,dof,fit,plotx,ploty,status = \
            leastsquare(functype,pinit,x,y,yerr,logfile,verbose)
        pinit = coeffs

        # point-by-point sigma-clipping test

        for ix in range(npts[iiter]):
            if (y[ix] - fit[ix] < rej_hi * sigma
                    and fit[ix] - y[ix] < rej_lo * sigma):
                tmpx.append(x[ix])
                tmpy.append(y[ix])
                if (yerr != None): tmpyerr.append(yerr[ix])
            else:
                iterstatus = 1
        x = scipy.array(tmpx)
        y = scipy.array(tmpy)
        if (yerr != None): yerr = scipy.array(tmpyerr)
        iiter += 1

# fudge scalar models

#    for i in range(len(plotx)):

# coeffs = best fit coefficients
# covar = covariance matrix
# iiter = number of sigma clipping iteration before convergence

    return coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status
Example #15
0
def MASTRADec(ra, dec, darcsec, srctab):

    # coordinate limits

    darcsec /= 3600.0
    ra1 = ra - darcsec / cos(dec * pi / 180)
    ra2 = ra + darcsec / cos(dec * pi / 180)
    dec1 = dec - darcsec
    dec2 = dec + darcsec

    # build mast query

    url = 'http://archive.stsci.edu/kepler/kepler_fov/search.php?'
    url += 'action=Search'
    url += '&masterRA=' + str(ra1) + '..' + str(ra2)
    url += '&masterDec=' + str(dec1) + '..' + str(dec2)
    url += '&max_records=10000'
    url += '&verb=3'
    url += '&outputformat=CSV'

    # retrieve results from MAST

    if srctab:
        try:
            lines = urllib.request.urlopen(url)
        except:
            message = 'WARNING -- KEPFIELD: Cannot retrieve data from MAST'
            status = kepmsg.warn(logfile, message)
            lines = ''
    else:
        lines = ''

# collate nearby sources

    kepid = []
    kepmag = []
    ra = []
    dec = []
    for line in lines:
        line = line.strip()

        # Python 3 hack
        try:
            'Kepler' in line
        except:
            line = line.decode('ascii')

        if (len(line) > 0 and 'Kepler' not in line and 'integer' not in line
                and 'no rows found' not in line):
            out = line.split(',')
            r, d = sex2dec(out[0], out[1])
            try:
                if out[-22] != 'Possible_artifact': kepid.append(int(out[2]))
            except:
                if out[-22] != 'Possible_artifact': kepid.append(0)
            try:
                if out[-22] != 'Possible_artifact':
                    kepmag.append(float(out[42]))
            except:
                if out[-22] != 'Possible_artifact': kepmag.append(0.0)
            if out[-22] != 'Possible_artifact': ra.append(r)
            if out[-22] != 'Possible_artifact': dec.append(d)
    kepid = array(kepid)
    kepmag = array(kepmag)
    ra = array(ra)
    dec = array(dec)

    return kepid, ra, dec, kepmag
def getWCSp(file, struct, logfile, verbose):
    status = 0
    crpix1p = 0.0
    crpix2p = 0.0
    crval1p = 0.0
    crval2p = 0.0
    cdelt1p = 0.0
    cdelt2p = 0.0
    try:
        crpix1p, status = get(file, struct, 'CRPIX1P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRPIX1P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crpix2p, status = get(file, struct, 'CRPIX2P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRPIX2P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crval1p, status = get(file, struct, 'CRVAL1P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRVAL1P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crval2p, status = get(file, struct, 'CRVAL2P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRVAL2P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        cdelt1p, status = get(file, struct, 'CDELT1P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CDELT1P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        cdelt2p, status = get(file, struct, 'CDELT2P', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CDELT2P in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1

    return crpix1p, crpix2p, crval1p, crval2p, cdelt1p, cdelt2p, status
def getWCSs(file, struct, logfile, verbose):
    status = 0
    crpix1 = 0.0
    crpix2 = 0.0
    crval1 = 0.0
    crval2 = 0.0
    cdelt1 = 0.0
    cdelt2 = 0.0
    pc = [0.0, 0.0, 0.0, 0.0]
    try:
        crpix1, status = get(file, struct, 'CRPIX1', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRPIX1 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crpix2, status = get(file, struct, 'CRPIX2', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRPIX2 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crval1, status = get(file, struct, 'CRVAL1', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRVAL1 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        crval2, status = get(file, struct, 'CRVAL2', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CRVAL2 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        cdelt1, status = get(file, struct, 'CDELT1', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CDELT1 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        cdelt2, status = get(file, struct, 'CDELT2', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword CDELT2 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        pc1_1, status = get(file, struct, 'PC1_1', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC1_1 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        pc1_2, status = get(file, struct, 'PC1_2', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC1_2 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        pc2_1, status = get(file, struct, 'PC2_1', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC2_1 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        pc2_2, status = get(file, struct, 'PC2_2', logfile, verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSS: Cannot read keyword PC2_2 in file ' + file
        kepmsg.warn(logfile, txt)
        status = 1
    try:
        pc = numpy.array([[pc1_1, pc1_2], [pc2_1, pc2_2]])
        pc = numpy.linalg.inv(pc)
    except:
        pass

    return crpix1, crpix2, crval1, crval2, cdelt1, cdelt2, pc, status
Example #18
0
def kepbls(infile,
           outfile,
           datacol,
           errcol,
           minper,
           maxper,
           mindur,
           maxdur,
           nsearch,
           nbins,
           plot,
           clobber,
           verbose,
           logfile,
           status,
           cmdLine=False):

    # startup parameters

    numpy.seterr(all="ignore")
    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 16
    ysize = 8
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPBLS -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'errcol=' + str(errcol) + ' '
    call += 'minper=' + str(minper) + ' '
    call += 'maxper=' + str(maxper) + ' '
    call += 'mindur=' + str(mindur) + ' '
    call += 'maxdur=' + str(maxdur) + ' '
    call += 'nsearch=' + str(nsearch) + ' '
    call += 'nbins=' + str(nbins) + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPBLS started at', logfile, verbose)

    # is duration greater than one bin in the phased light curve?

    if float(nbins) * maxdur / 24.0 / maxper <= 1.0:
        message = 'WARNING -- KEPBLS: ' + str(
            maxdur) + ' hours transit duration < 1 phase bin when P = '
        message += str(maxper) + ' days'
        kepmsg.warn(logfile, message)

# test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPBLS: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array(
            [table.field('time'),
             table.field(datacol),
             table.field(errcol)])
        work1 = numpy.rot90(work1, 3)
        work1 = work1[~numpy.isnan(work1).any(1)]

# read table columns

    if status == 0:
        intime = work1[:, 2] + bjdref
        indata = work1[:, 1]
        inerr = work1[:, 0]

# test whether the period range is sensible

    if status == 0:
        tr = intime[-1] - intime[0]
        if maxper > tr:
            message = 'ERROR -- KEPBLS: maxper is larger than the time range of the input data'
            status = kepmsg.err(logfile, message, verbose)

# prepare time series

    if status == 0:
        work1 = intime - intime[0]
        work2 = indata - numpy.mean(indata)

# start period search

    if status == 0:
        srMax = numpy.array([], dtype='float32')
        transitDuration = numpy.array([], dtype='float32')
        transitPhase = numpy.array([], dtype='float32')
        dPeriod = (maxper - minper) / nsearch
        trialPeriods = numpy.arange(minper,
                                    maxper + dPeriod,
                                    dPeriod,
                                    dtype='float32')
        complete = 0
        print ' '
        for trialPeriod in trialPeriods:
            fracComplete = float(complete) / float(len(trialPeriods) -
                                                   1) * 100.0
            txt = '\r'
            txt += 'Trial period = '
            txt += str(int(trialPeriod))
            txt += ' days ['
            txt += str(int(fracComplete))
            txt += '% complete]'
            txt += ' ' * 20
            sys.stdout.write(txt)
            sys.stdout.flush()
            complete += 1
            srMax = numpy.append(srMax, 0.0)
            transitDuration = numpy.append(transitDuration, numpy.nan)
            transitPhase = numpy.append(transitPhase, numpy.nan)
            trialFrequency = 1.0 / trialPeriod

            # minimum and maximum transit durations in quantized phase units

            duration1 = max(int(float(nbins) * mindur / 24.0 / trialPeriod), 2)
            duration2 = max(
                int(float(nbins) * maxdur / 24.0 / trialPeriod) + 1,
                duration1 + 1)

            # 30 minutes in quantized phase units

            halfHour = int(0.02083333 / trialPeriod * nbins + 1)

            # compute folded time series with trial period

            work4 = numpy.zeros((nbins), dtype='float32')
            work5 = numpy.zeros((nbins), dtype='float32')
            phase = numpy.array(
                ((work1 * trialFrequency) -
                 numpy.floor(work1 * trialFrequency)) * float(nbins),
                dtype='int')
            ptuple = numpy.array([phase, work2, inerr])
            ptuple = numpy.rot90(ptuple, 3)
            phsort = numpy.array(sorted(ptuple, key=lambda ph: ph[2]))
            for i in range(nbins):
                elements = numpy.nonzero(phsort[:, 2] == float(i))[0]
                work4[i] = numpy.mean(phsort[elements, 1])
                work5[i] = math.sqrt(
                    numpy.sum(numpy.power(phsort[elements, 0], 2)) /
                    len(elements))

# extend the work arrays beyond nbins by wrapping

            work4 = numpy.append(work4, work4[:duration2])
            work5 = numpy.append(work5, work5[:duration2])

            # calculate weights of folded light curve points

            sigmaSum = numpy.nansum(numpy.power(work5, -2))
            omega = numpy.power(work5, -2) / sigmaSum

            # calculate weighted phased light curve

            s = omega * work4

            # iterate through trial period phase

            for i1 in range(nbins):

                # iterate through transit durations

                for duration in range(duration1, duration2 + 1, int(halfHour)):

                    # calculate maximum signal residue

                    i2 = i1 + duration
                    sr1 = numpy.sum(numpy.power(s[i1:i2], 2))
                    sr2 = numpy.sum(omega[i1:i2])
                    sr = math.sqrt(sr1 / (sr2 * (1.0 - sr2)))
                    if sr > srMax[-1]:
                        srMax[-1] = sr
                        transitDuration[-1] = float(duration)
                        transitPhase[-1] = float((i1 + i2) / 2)

# normalize maximum signal residue curve

        bestSr = numpy.max(srMax)
        bestTrial = numpy.nonzero(srMax == bestSr)[0][0]
        srMax /= bestSr
        transitDuration *= trialPeriods / 24.0
        BJD0 = numpy.array(transitPhase * trialPeriods / nbins,
                           dtype='float64') + intime[0] - 2454833.0
        print '\n'

# clean up x-axis unit

    if status == 0:
        ptime = copy(trialPeriods)
        xlab = 'Trial Period (days)'

# clean up y-axis units

    if status == 0:
        pout = copy(srMax)
        ylab = 'Normalized Signal Residue'

        # data limits

        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize, ysize])
        pylab.clf()

        # plot data

        ax = pylab.axes([0.06, 0.10, 0.93, 0.87])

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90)

# plot curve

    if status == 0 and plot:
        pylab.plot(ptime[1:-1],
                   pout[1:-1],
                   color=lcolor,
                   linestyle='-',
                   linewidth=lwidth)
        pylab.fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab, {'color': 'k'})
        pylab.grid()

# plot ranges

    if status == 0 and plot:
        pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)

# render plot

        if status == 0 and plot:
            if cmdLine:
                pylab.show()
            else:
                pylab.ion()
                pylab.plot([])
                pylab.ioff()

# append new BLS data extension to the output file

    if status == 0:
        col1 = Column(name='PERIOD',
                      format='E',
                      unit='days',
                      array=trialPeriods)
        col2 = Column(name='BJD0',
                      format='D',
                      unit='BJD - 2454833',
                      array=BJD0)
        col3 = Column(name='DURATION',
                      format='E',
                      unit='hours',
                      array=transitDuration)
        col4 = Column(name='SIG_RES', format='E', array=srMax)
        cols = ColDefs([col1, col2, col3, col4])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: trial period'
        instr[-1].header.cards[
            'TTYPE2'].comment = 'column title: trial mid-transit zero-point'
        instr[-1].header.cards[
            'TTYPE3'].comment = 'column title: trial transit duration'
        instr[-1].header.cards[
            'TTYPE4'].comment = 'column title: normalized signal residue'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float64'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT1'].comment = 'column units: days'
        instr[-1].header.cards[
            'TUNIT2'].comment = 'column units: BJD - 2454833'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: hours'
        instr[-1].header.update('EXTNAME', 'BLS', 'extension name')
        instr[-1].header.update('PERIOD', trialPeriods[bestTrial],
                                'most significant trial period [d]')
        instr[-1].header.update('BJD0', BJD0[bestTrial] + 2454833.0,
                                'time of mid-transit [BJD]')
        instr[-1].header.update('TRANSDUR', transitDuration[bestTrial],
                                'transit duration [hours]')
        instr[-1].header.update('SIGNRES', srMax[bestTrial] * bestSr,
                                'maximum signal residue')

# history keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# print best trial period results

    if status == 0:
        print '      Best trial period = %.5f days' % trialPeriods[bestTrial]
        print '    Time of mid-transit = BJD %.5f' % (BJD0[bestTrial] +
                                                      2454833.0)
        print '       Transit duration = %.5f hours' % transitDuration[
            bestTrial]
        print ' Maximum signal residue = %.4g \n' % (srMax[bestTrial] * bestSr)

# end time

    if (status == 0):
        message = 'KEPBLS completed at'
    else:
        message = '\nKEPBLS aborted at'
    kepmsg.clock(message, logfile, verbose)
Example #19
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Example #20
0
def kepimages(infile,outfix,imtype,ranges,clobber,verbose,logfile,status): 

# startup parameters

    status = 0

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPIMAGES -- '
    call += 'infile='+infile+' '
    call += 'outfix='+outfix+' '
    call += 'imtype='+imtype+' '
    call += 'ranges='+str(ranges)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPIMAGES started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# open input file

    status = 0
    print(' ')
    instr = pyfits.open(infile,mode='readonly',memmap=True)
    cards0 = instr[0].header.cards
    cards1 = instr[1].header.cards
    cards2 = instr[2].header.cards

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# ingest time series data

    if status == 0:
        time = instr[1].data.field('TIME')[:] + 2454833.0
        timecorr = instr[1].data.field('TIMECORR')[:]
        cadenceno = instr[1].data.field('CADENCENO')[:]
        raw_cnts = instr[1].data.field('RAW_CNTS')[:]
        flux = instr[1].data.field('FLUX')[:]
        flux_err = instr[1].data.field('FLUX_ERR')[:]
        flux_bkg = instr[1].data.field('FLUX_BKG')[:]
        flux_bkg_err = instr[1].data.field('FLUX_BKG_ERR')[:]
        cosmic_rays = instr[1].data.field('COSMIC_RAYS')[:]
        quality = instr[1].data.field('QUALITY')[:]
        pos_corr1 = instr[1].data.field('POS_CORR1')[:]
        pos_corr2 = instr[1].data.field('POS_CORR2')[:]

# choose output image

    if status == 0:
        if imtype.lower() == 'raw_cnts':
            outim = raw_cnts
        elif imtype.lower() == 'flux_err':
            outim = flux_err
        elif imtype.lower() == 'flux_bkg':
            outim = flux_bkg
        elif imtype.lower() == 'flux_bkg_err':
            outim = flux_bkg_err
        elif imtype.lower() == 'cosmic_rays':
            outim = cosmic_rays
        else:
            outim = flux

# identify images to be exported

    if status == 0:
        tim = array([]); dat = array([]); err = array([])
        tstart, tstop, status = kepio.timeranges(ranges,logfile,verbose)
    if status == 0:
        cadencelis, status = kepstat.filterOnRange(time,tstart,tstop)

# provide name for each output file and clobber if file exists

    if status == 0:
        for cadence in cadencelis:
            outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits'
            if clobber and status == 0: status = kepio.clobber(outfile,logfile,verbose)
            if kepio.fileexists(outfile) and status == 0: 
                message = 'ERROR -- KEPIMAGES: ' + outfile + ' exists. Use --clobber'
                status = kepmsg.err(logfile,message,True)

# construct output primary extension

    if status == 0:
        ncad = 0
        for cadence in cadencelis:
            outfile = outfix + '_BJD%.4f' % time[cadence] + '.fits'
            hdu0 = pyfits.PrimaryHDU()
            for i in range(len(cards0)):
                try:
                    if cards0[i].key not in list(hdu0.header.keys()):
                        hdu0.header.update(cards0[i].key, cards0[i].value, cards0[i].comment)
                    else:
                        hdu0.header.cards[cards0[i].key].comment = cards0[i].comment
                except:
                    pass
            status = kepkey.history(call,hdu0,outfile,logfile,verbose)
            outstr = HDUList(hdu0)

# construct output image extension

            hdu1 = ImageHDU(flux[cadence])
            for i in range(len(cards2)):
                try:
                    if cards2[i].key not in list(hdu1.header.keys()):
                        hdu1.header.update(cards2[i].key, cards2[i].value, cards2[i].comment)
                except:
                    pass
            for i in range(len(cards1)):
                if (cards1[i].key not in list(hdu1.header.keys()) and
                    cards1[i].key[:4] not in ['TTYP','TFOR','TUNI','TDIS','TDIM','WCAX','1CTY',
                                              '2CTY','1CRP','2CRP','1CRV','2CRV','1CUN','2CUN',
                                              '1CDE','2CDE','1CTY','2CTY','1CDL','2CDL','11PC',
                                              '12PC','21PC','22PC','WCSN','TFIE']):
                    hdu1.header.update(cards1[i].key, cards1[i].value, cards1[i].comment)
            try:
                int_time = cards1['INT_TIME'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find INT_TIME keyword')
            try:
                frametim = cards1['FRAMETIM'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find FRAMETIM keyword')
            try:
                num_frm = cards1['NUM_FRM'].value
            except:
                kepmsg.warn(logfile,'WARNING -- KEPIMAGES: cannot find NUM_FRM keyword')
            hdu1.header.update('EXTNAME','IMAGE','name of extension')
            try:
                hdu1.header.update('TELAPSE',frametim * num_frm,'[s] elapsed time for exposure')
            except:
                hdu1.header.update('TELAPSE',-999,'[s] elapsed time for exposure')
            try:
                hdu1.header.update('LIVETIME',int_time * num_frm,'[s] TELASPE multiplied by DEADC')
            except:
                hdu1.header.update('LIVETIME',-999,'[s] TELASPE multiplied by DEADC')
            try:
                hdu1.header.update('EXPOSURE',int_time * num_frm,'[s] time on source')
            except:
                hdu1.header.update('EXPOSURE',-999,'[s] time on source')
            try:
                hdu1.header.update('MIDTIME',time[cadence],'[BJD] mid-time of exposure')
            except:
                hdu1.header.update('MIDTIME',-999,'[BJD] mid-time of exposure')
            try:
                hdu1.header.update('TIMECORR',timecorr[cadence],'[d] barycenter - timeslice correction')
            except:
                hdu1.header.update('TIMECORR',-999,'[d] barycenter - timeslice correction')
            try:
                hdu1.header.update('CADENCEN',cadenceno[cadence],'unique cadence number')
            except:
                hdu1.header.update('CADENCEN',-999,'unique cadence number')
            try:
                hdu1.header.update('QUALITY',quality[cadence],'pixel quality flag')
            except:
                hdu1.header.update('QUALITY',-999,'pixel quality flag')
            try:
                if True in numpy.isfinite(cosmic_rays[cadence]):
                    hdu1.header.update('COSM_RAY',True,'cosmic ray detected?')
                else:
                    hdu1.header.update('COSM_RAY',False,'cosmic ray detected?')
            except:
                hdu1.header.update('COSM_RAY',-999,'cosmic ray detected?')
            try:
                pc1 = str(pos_corr1[cadence])
                pc2 = str(pos_corr2[cadence])
                hdu1.header.update('POSCORR1',pc1,'[pix] column position correction')
                hdu1.header.update('POSCORR2',pc2,'[pix] row position correction')
            except:
                hdu1.header.update('POSCORR1',-999,'[pix] column position correction')
                hdu1.header.update('POSCORR2',-999,'[pix] row position correction')
            outstr.append(hdu1)

# write output file

            if status == 0:
                outstr.writeto(outfile,checksum=True)
                ncad += 1
                txt  = '\r%3d%% ' % (float(ncad) / float(len(cadencelis)) * 100.0)
                txt += '%s ' % outfile
                sys.stdout.write(txt)
                sys.stdout.flush()

# close input structure

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    
        print('\n')

# end time

    kepmsg.clock('KEPIMAGES finished at',logfile,verbose)
Example #21
0
def getWCSp(file,struct,logfile,verbose):

    status = 0
    crpix1p = 0.0
    crpix2p = 0.0
    crval1p = 0.0
    crval2p = 0.0
    cdelt1p = 0.0
    cdelt2p = 0.0
    try:
        crpix1p, status = get(file,struct,'CRPIX1P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRPIX1P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crpix2p, status = get(file,struct,'CRPIX2P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRPIX2P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crval1p, status = get(file,struct,'CRVAL1P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRVAL1P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        crval2p, status = get(file,struct,'CRVAL2P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CRVAL2P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        cdelt1p, status = get(file,struct,'CDELT1P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CDELT1P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1
    try:
        cdelt2p, status = get(file,struct,'CDELT2P',logfile,verbose)
    except:
        txt = 'WARNING -- KEPKEY.GETWCSP: Cannot read keyword CDELT2P in file ' + file
        kepmsg.warn(logfile,txt)
        status = 1

    return crpix1p, crpix2p, crval1p, crval2p, cdelt1p, cdelt2p, status
Example #22
0
def keppixseries(infile,
                 outfile,
                 plotfile,
                 plottype,
                 filter,
                 function,
                 cutoff,
                 clobber,
                 verbose,
                 logfile,
                 status,
                 cmdLine=False):

    # input arguments

    status = 0
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPPIXSERIES -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'plotfile=' + plotfile + ' '
    call += 'plottype=' + plottype + ' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter=' + filt + ' '
    call += 'function=' + function + ' '
    call += 'cutoff=' + str(cutoff) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPPIXSERIES started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(
            infile, logfile, verbose)

# print target data

    if status == 0:
        print ''
        print '      KepID:  %s' % kepid
        print ' RA (J2000):  %s' % ra
        print 'Dec (J2000): %s' % dec
        print '     KepMag:  %s' % kepmag
        print '   SkyGroup:    %2s' % skygroup
        print '     Season:    %2s' % str(season)
        print '    Channel:    %2s' % channel
        print '     Module:    %2s' % module
        print '     Output:     %1s' % output
        print ''

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim, xdim, npts))
        errseries = empty((ydim, xdim, npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim):
            for j in range(xdim):
                npts = 0
                for k in range(nrows):
                    if qual[k] == 0 and \
                    numpy.isfinite(barytime[k]) and \
                    numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                        time[npts] = barytime[k]
                        timecorr[npts] = tcorr[k]
                        cadenceno[npts] = cadno[k]
                        quality[npts] = qual[k]
                        pixseries[i, j, npts] = fluxpixels[k, np]
                        errseries[i, j, npts] = errpixels[k, np]
                        npts += 1
                np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose)
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale],
                                linspace(0, dx - 1, dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0, dx - 1, dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

                # convolve data

                if status == 0:
                    convolved = convolve(padded, filtfunc, 'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]

# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,
                              j, :] = pixseries[i, j, :] - outdata + outmedian

# construct output file

    if status == 0 and ydim * xdim < 1000:
        instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        status = kepkey.history(call, instruct[0], outfile, logfile, verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(
            Column(name='TIME',
                   format='D',
                   unit='BJD - 2454833',
                   disp='D12.7',
                   array=time))
        cols.append(
            Column(name='TIMECORR',
                   format='E',
                   unit='d',
                   disp='E13.6',
                   array=timecorr))
        cols.append(
            Column(name='CADENCENO', format='J', disp='I10', array=cadenceno))
        cols.append(Column(name='QUALITY', format='J', array=quality))
        for i in range(ydim):
            for j in range(xdim):
                colname = 'COL%d_ROW%d' % (i + column, j + row)
                cols.append(
                    Column(name=colname,
                           format='E',
                           disp='E13.6',
                           array=pixseries[i, j, :]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT', True, 'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension')
        except:
            status = 0
        try:
            hdu1.header.update(
                'EXTVER', instruct[1].header['EXTVER'],
                'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'],
                               'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'],
                               'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT', instruct[1].header['OBJECT'],
                               'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'],
                               'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS', instruct[1].header['RADESYS'],
                               'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'],
                               '[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'],
                               '[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'],
                               'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'],
                               'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'],
                               'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'],
                               'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'],
                               'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'],
                               'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'],
                               'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART', instruct[1].header['TSTART'],
                               'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP', instruct[1].header['TSTOP'],
                               'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START', instruct[1].header['LC_START'],
                               'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END', instruct[1].header['LC_END'],
                               'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'],
                               '[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'],
                               '[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'],
                               '[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC', instruct[1].header['DEADC'],
                               'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'],
                               'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'],
                               '[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'],
                               '[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'],
                               '[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME', instruct[1].header['READTIME'],
                               '[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'],
                               '[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'],
                               'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'],
                               '[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'],
                               'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END', instruct[1].header['DATE-END'],
                               'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'],
                               'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'],
                               'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'],
                               'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN', instruct[1].header['GAIN'],
                               '[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS', instruct[1].header['READNOIS'],
                               '[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'],
                               'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'],
                               'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'],
                               '[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, instruct[2].data, instruct[2].header)
        status = kepio.closefits(instruct, logfile, verbose)
    else:
        message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile, message)

# plot style

    if status == 0:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.0,
                'axes.labelsize': 32,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 8,
                'legend.fontsize': 8,
                'xtick.labelsize': 12,
                'ytick.labelsize': 12
            }
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
        pylab.figure(num=None, figsize=[12, 12])
        pylab.clf()
        dx = 0.93 / xdim
        dy = 0.94 / ydim
        ax = pylab.axes([0.06, 0.05, 0.93, 0.94])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color': 'k'})
        pylab.ylabel('arbitrary flux', {'color': 'k'})
        for i in range(ydim):
            for j in range(xdim):
                tmin = amin(time)
                tmax = amax(time)
                try:
                    numpy.isfinite(amin(pixseries[i, j, :]))
                    numpy.isfinite(amin(pixseries[i, j, :]))
                    fmin = amin(pixseries[i, j, :])
                    fmax = amax(pixseries[i, j, :])
                except:
                    ugh = 1
                xmin = tmin - (tmax - tmin) / 40
                xmax = tmax + (tmax - tmin) / 40
                ymin = fmin - (fmax - fmin) / 20
                ymax = fmax + (fmax - fmin) / 20
                if kepstat.bitInBitmap(maskimg[i, j], 2):
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy],
                               axisbg='lightslategray')
                elif maskimg[i, j] == 0:
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy],
                               axisbg='black')
                else:
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy])
                if j == int(xdim / 2) and i == 0:
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                elif j == 0 and i == int(ydim / 2):
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                else:
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                ptime = time * 1.0
                ptime = numpy.insert(ptime, [0], ptime[0])
                ptime = numpy.append(ptime, ptime[-1])
                pflux = pixseries[i, j, :] * 1.0
                pflux = numpy.insert(pflux, [0], -1000.0)
                pflux = numpy.append(pflux, -1000.0)
                pylab.plot(time,
                           pixseries[i, j, :],
                           color='#0000ff',
                           linestyle='-',
                           linewidth=0.5)
                if not kepstat.bitInBitmap(maskimg[i, j], 2):
                    pylab.fill(ptime,
                               pflux,
                               fc='lightslategray',
                               linewidth=0.0,
                               alpha=1.0)
                pylab.fill(ptime,
                           pflux,
                           fc='#FFF380',
                           linewidth=0.0,
                           alpha=1.0)
                if 'loc' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(ymin, ymax)
                if 'glob' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05)
                if 'full' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(1.0e-10, ymax * 1.05)

# render plot

        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPPIXSERIES ended at', logfile, verbose)

    return
Example #23
0
def kepfold(infile,outfile,period,phasezero,bindata,binmethod,threshold,niter,nbins,
            rejqual,plottype,plotlab,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 32; ticksize = 18; xsize = 18; ysize = 10
    lcolor = '#0000ff'; lwidth = 2.0; fcolor = '#ffff00'; falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFOLD -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'period='+str(period)+' '
    call += 'phasezero='+str(phasezero)+' '
    binit = 'n'
    if (bindata): binit = 'y'
    call += 'bindata='+binit+' '
    call += 'binmethod='+binmethod+' '
    call += 'threshold='+str(threshold)+' '
    call += 'niter='+str(niter)+' '
    call += 'nbins='+str(nbins)+' '
    qflag = 'n'
    if (rejqual): qflag = 'y'
    call += 'rejqual='+qflag+ ' '
    call += 'plottype='+plottype+ ' '
    call += 'plotlab='+plotlab+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPFOLD started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# input data

    if status == 0:
        table = instr[1].data
        incards = instr[1].header.cards
        try:
            sap = instr[1].data.field('SAP_FLUX')
        except:
            try:
                sap = instr[1].data.field('ap_raw_flux')
            except:
                sap = zeros(len(table.field(0)))
        try:
            saperr = instr[1].data.field('SAP_FLUX_ERR')
        except:
            try:
                saperr = instr[1].data.field('ap_raw_err')
            except:
                saperr = zeros(len(table.field(0)))
        try:
            pdc = instr[1].data.field('PDCSAP_FLUX')
        except:
            try:
                pdc = instr[1].data.field('ap_corr_flux')
            except:
                pdc = zeros(len(table.field(0)))
        try:
            pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR')
        except:
            try:
                pdcerr = instr[1].data.field('ap_corr_err')
            except:
                pdcerr = zeros(len(table.field(0)))
        try:
            cbv = instr[1].data.field('CBVSAP_FLUX')
        except:
            cbv = zeros(len(table.field(0)))
            if 'cbv' in plottype:
                txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            det = instr[1].data.field('DETSAP_FLUX')
        except:
            det = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            deterr = instr[1].data.field('DETSAP_FLUX_ERR')
        except:
            deterr = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            quality = instr[1].data.field('SAP_QUALITY')
        except:
            quality = zeros(len(table.field(0)))
            if qualflag:
                txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column'
                kepmsg.warn(logfile,txt)
    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        barytime1 = copy(barytime)


# filter out NaNs and quality > 0

    work1 = []; work2 = []; work3 = []; work4 = []; work5 = []; work6 = []; work8 = []; work9 = []
    if status == 0:
        if 'sap' in plottype:
            datacol = copy(sap)
            errcol = copy(saperr)
        if 'pdc' in plottype:
            datacol = copy(pdc)
            errcol = copy(pdcerr)
        if 'cbv' in plottype:
            datacol = copy(cbv)
            errcol = copy(saperr)
        if 'det' in plottype:
            datacol = copy(det)
            errcol = copy(deterr)
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and
                numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and
                numpy.isfinite(errcol[i]) and errcol[i] > 0.0):
                if rejqual and quality[i] == 0:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
                elif not rejqual:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
        barytime = array(work1,dtype='float64')
        sap = array(work2,dtype='float32') / cadenom
        saperr = array(work3,dtype='float32') / cadenom
        pdc = array(work4,dtype='float32') / cadenom
        pdcerr = array(work5,dtype='float32') / cadenom
        cbv = array(work6,dtype='float32') / cadenom
        det = array(work8,dtype='float32') / cadenom
        deterr = array(work9,dtype='float32') / cadenom

# calculate phase

    if status == 0:
        if phasezero < bjdref:
            phasezero += bjdref
        date1 = (barytime1 + bjdref - phasezero)
        phase1 = (date1 / period) - floor(date1/period)
        date2 = (barytime + bjdref - phasezero)
        phase2 = (date2 / period) - floor(date2/period)
        phase2 = array(phase2,'float32')

# sort phases

    if status == 0:
        ptuple = []
        phase3 = []; 
        sap3 = []; saperr3 = []
        pdc3 = []; pdcerr3 = []
        cbv3 = []; cbverr3 = []
        det3 = []; deterr3 = []
        for i in range(len(phase2)):
            ptuple.append([phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i]])
        phsort = sorted(ptuple,key=lambda ph: ph[0])
        for i in range(len(phsort)):
            phase3.append(phsort[i][0])
            sap3.append(phsort[i][1])
            saperr3.append(phsort[i][2])
            pdc3.append(phsort[i][3])
            pdcerr3.append(phsort[i][4])
            cbv3.append(phsort[i][5])
            cbverr3.append(phsort[i][6])
            det3.append(phsort[i][7])
            deterr3.append(phsort[i][8])
        phase3 = array(phase3,'float32')
        sap3 = array(sap3,'float32')
        saperr3 = array(saperr3,'float32')
        pdc3 = array(pdc3,'float32')
        pdcerr3 = array(pdcerr3,'float32')
        cbv3 = array(cbv3,'float32')
        cbverr3 = array(cbverr3,'float32')
        det3 = array(det3,'float32')
        deterr3 = array(deterr3,'float32')

# bin phases

    if status == 0 and bindata:
        work1 = array([sap3[0]],'float32')
        work2 = array([saperr3[0]],'float32')
        work3 = array([pdc3[0]],'float32')
        work4 = array([pdcerr3[0]],'float32')
        work5 = array([cbv3[0]],'float32')
        work6 = array([cbverr3[0]],'float32')
        work7 = array([det3[0]],'float32')
        work8 = array([deterr3[0]],'float32')
        phase4 = array([],'float32')
        sap4 = array([],'float32')
        saperr4 = array([],'float32')
        pdc4 = array([],'float32')
        pdcerr4 = array([],'float32')
        cbv4 = array([],'float32')
        cbverr4 = array([],'float32')
        det4 = array([],'float32')
        deterr4 = array([],'float32')
        dt = 1.0 / nbins
        nb = 0.0
        rng = numpy.append(phase3,phase3[0]+1.0)
        for i in range(len(rng)):
            if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt:
                if len(work1) > 0:
                    phase4 = append(phase4,(nb + 0.5) * dt)
                    if (binmethod == 'mean'):
                        sap4 = append(sap4,kepstat.mean(work1))
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        pdc4 = append(pdc4,kepstat.mean(work3))
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        cbv4 = append(cbv4,kepstat.mean(work5))
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        det4 = append(det4,kepstat.mean(work7))
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                    elif (binmethod == 'median'):
                        sap4 = append(sap4,kepstat.median(work1,logfile))
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        pdc4 = append(pdc4,kepstat.median(work3,logfile))
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        cbv4 = append(cbv4,kepstat.median(work5,logfile))
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        det4 = append(det4,kepstat.median(work7,logfile))
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                    else:
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2,
                                           threshold,threshold,niter,logfile,False)
                        sap4 = append(sap4,coeffs[0])
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4,
                                           threshold,threshold,niter,logfile,False)
                        pdc4 = append(pdc4,coeffs[0])
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6,
                                           threshold,threshold,niter,logfile,False)
                        cbv4 = append(cbv4,coeffs[0])
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8,
                                           threshold,threshold,niter,logfile,False)
                        det4 = append(det4,coeffs[0])
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                work1 = array([],'float32')
                work2 = array([],'float32')
                work3 = array([],'float32')
                work4 = array([],'float32')
                work5 = array([],'float32')
                work6 = array([],'float32')
                work7 = array([],'float32')
                work8 = array([],'float32')
                nb += 1.0
            else:
                work1 = append(work1,sap3[i])
                work2 = append(work2,saperr3[i])
                work3 = append(work3,pdc3[i])
                work4 = append(work4,pdcerr3[i])
                work5 = append(work5,cbv3[i])
                work6 = append(work6,cbverr3[i])
                work7 = append(work7,det3[i])
                work8 = append(work8,deterr3[i])

# update HDU1 for output file

    if status == 0:

        cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)]))
        instr[1] = pyfits.new_table(cols)
        instr[1].header.cards['TTYPE'+str(len(instr[1].columns))].comment = 'column title: phase'
        instr[1].header.cards['TFORM'+str(len(instr[1].columns))].comment = 'data type: float32'
        for i in range(len(incards)):
            if incards[i].key not in instr[1].header.keys():
                instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment)
            else:
                instr[1].header.cards[incards[i].key].comment = incards[i].comment
        instr[1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]')

# write new phased data extension for output file

    if status == 0 and bindata:
        col1 = Column(name='PHASE',format='E',array=phase4)
        col2 = Column(name='SAP_FLUX',format='E',unit='e/s',array=sap4/cadenom)
        col3 = Column(name='SAP_FLUX_ERR',format='E',unit='e/s',array=saperr4/cadenom)
        col4 = Column(name='PDC_FLUX',format='E',unit='e/s',array=pdc4/cadenom)
        col5 = Column(name='PDC_FLUX_ERR',format='E',unit='e/s',array=pdcerr4/cadenom)
        col6 = Column(name='CBV_FLUX',format='E',unit='e/s',array=cbv4/cadenom)
        col7 = Column(name='DET_FLUX',format='E',array=det4/cadenom)
        col8 = Column(name='DET_FLUX_ERR',format='E',array=deterr4/cadenom)
        cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: phase'
        instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry'
        instr[-1].header.cards['TTYPE3'].comment = 'column title: SAP 1-sigma error'
        instr[-1].header.cards['TTYPE4'].comment = 'column title: pipeline conditioned photometry'
        instr[-1].header.cards['TTYPE5'].comment = 'column title: PDC 1-sigma error'
        instr[-1].header.cards['TTYPE6'].comment = 'column title: cotrended basis vector photometry'
        instr[-1].header.cards['TTYPE7'].comment = 'column title: Detrended aperture photometry'
        instr[-1].header.cards['TTYPE8'].comment = 'column title: DET 1-sigma error'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM5'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM6'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM7'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM8'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT4'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT5'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT6'].comment = 'column units: electrons per second'
        instr[-1].header.update('EXTNAME','FOLDED','extension name')
        instr[-1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]')
        instr[-1].header.update('BINMETHD',binmethod,'phase binning method')
        if binmethod =='sigclip':
            instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]')
            instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations')
    
# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)
        instr.writeto(outfile)

# clean up x-axis unit

    if status == 0:
        ptime1 = array([],'float32')
        ptime2 = array([],'float32')
        pout1 = array([],'float32')
        pout2 = array([],'float32')
        if bindata:
            work = sap4
            if plottype == 'pdc':
                work = pdc4
            if plottype == 'cbv':
                work = cbv4
            if plottype == 'det':
                work = det4
            for i in range(len(phase4)):
                if (phase4[i] > 0.5): 
                    ptime2 = append(ptime2,phase4[i] - 1.0)
                    pout2 = append(pout2,work[i])
            ptime2 = append(ptime2,phase4)
            pout2 = append(pout2,work)
            for i in range(len(phase4)):
                if (phase4[i] <= 0.5): 
                    ptime2 = append(ptime2,phase4[i] + 1.0)
                    pout2 = append(pout2,work[i])
        work = sap3
        if plottype == 'pdc':
            work = pdc3
        if plottype == 'cbv':
            work = cbv3
        if plottype == 'det':
            work = det3
        for i in range(len(phase3)):
            if (phase3[i] > 0.5): 
                ptime1 = append(ptime1,phase3[i] - 1.0)
                pout1 = append(pout1,work[i])
        ptime1 = append(ptime1,phase3)
        pout1 = append(pout1,work)
        for i in range(len(phase3)):
            if (phase3[i] <= 0.5): 
                ptime1 = append(ptime1,phase3[i] + 1.0)
                pout1 = append(pout1,work[i])
    xlab = 'Orbital Phase ($\phi$)'

# clean up y-axis units

    if status == 0:

        nrm = len(str(int(pout1[isfinite(pout1)].max())))-1


        pout1 = pout1 / 10**nrm
        pout2 = pout2 / 10**nrm
        if nrm == 0:
            ylab = plotlab
        else:
            ylab = '10$^%d$ %s' % (nrm, plotlab)

# data limits

        xmin = ptime1.min()
        xmax = ptime1.max()
        ymin = pout1[isfinite(pout1)].min()
        ymax = pout1[isfinite(pout1)].max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime1 = insert(ptime1,[0],[ptime1[0]]) 
        ptime1 = append(ptime1,[ptime1[-1]])
        pout1 = insert(pout1,[0],[0.0]) 
        pout1 = append(pout1,0.0)
        if bindata:
            ptime2 = insert(ptime2,[0],ptime2[0] - 1.0 / nbins) 
            ptime2 = insert(ptime2,[0],ptime2[0]) 
            ptime2 = append(ptime2,[ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins])
            pout2 = insert(pout2,[0],[pout2[-1]]) 
            pout2 = insert(pout2,[0],[0.0]) 
            pout2 = append(pout2,[pout2[2],0.0])

# plot new light curve

    if status == 0 and plottype != 'none':
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 18,
                      'legend.fontsize': 18,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            print 'ERROR -- KEPFOLD: install latex for scientific plotting'
            status = 1
    if status == 0 and plottype != 'none':
	pylab.figure(figsize=[17,7])
        pylab.clf()
        ax = pylab.axes([0.06,0.11,0.93,0.86])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)
        if bindata:
            pylab.fill(ptime2,pout2,color=fcolor,linewidth=0.0,alpha=falpha)
        else:
            if 'det' in plottype:
                pylab.fill(ptime1,pout1,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime1,pout1,color=lcolor,linestyle='',linewidth=lwidth,marker='.')
        if bindata:
            pylab.plot(ptime2[1:-1],pout2[1:-1],color='r',linestyle='-',linewidth=lwidth,marker='')
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
        xlim(-0.49999,1.49999)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
#            ylim(0.96001,1.03999)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        grid()
        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# stop time

    kepmsg.clock('KEPFOLD ended at: ',logfile,verbose)
Example #24
0
def MASTRADec(ra, dec, darcsec, srctab, logfile):

    # coordinate limits

    darcsec /= 3600.0
    ra1 = ra - darcsec / np.cos(dec * np.pi / 180)
    ra2 = ra + darcsec / np.cos(dec * np.pi / 180)
    dec1 = dec - darcsec
    dec2 = dec + darcsec

    # build mast query

    url = "http://archive.stsci.edu/kepler/kepler_fov/search.php?"
    url += "action=Search"
    url += "&masterRA=" + str(ra1) + ".." + str(ra2)
    url += "&masterDec=" + str(dec1) + ".." + str(dec2)
    url += "&max_records=10000"
    url += "&verb=3"
    url += "&outputformat=CSV"

    # retrieve results from MAST

    if srctab:
        try:
            lines = urllib.request.urlopen(url)
        except:
            message = "WARNING -- KEPFIELD: Cannot retrieve data from MAST"
            status = kepmsg.warn(logfile, message)
            lines = ""
    else:
        lines = ""

    # collate nearby sources

    kepid = []
    kepmag = []
    ra = []
    dec = []
    for line in lines:
        line = line.strip().decode("ascii")

        if len(line) > 0 and "Kepler" not in line and "integer" not in line and "no rows found" not in line:
            out = line.split(",")
            r, d = sex2dec(out[0], out[1])
            try:
                if out[-22] != "Possible_artifact":
                    kepid.append(int(out[2]))
            except:
                if out[-22] != "Possible_artifact":
                    kepid.append(0)
            try:
                if out[-22] != "Possible_artifact":
                    kepmag.append(float(out[42]))
            except:
                if out[-22] != "Possible_artifact":
                    kepmag.append(0.0)
            if out[-22] != "Possible_artifact":
                ra.append(r)
            if out[-22] != "Possible_artifact":
                dec.append(d)
    kepid = np.array(kepid)
    kepmag = np.array(kepmag)
    ra = np.array(ra)
    dec = np.array(dec)

    return kepid, ra, dec, kepmag