Example #1
0
def kepfoldimg(infile,outfile,datacol,period,phasezero,binmethod,threshold,niter,nbins,
            plot,plotlab,clobber,verbose,logfile,status): 

# startup parameters

    status = 0
    labelsize = 24; ticksize = 16; xsize = 17; ysize = 7
    lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFOLD -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    call += 'period='+str(period)+' '
    call += 'phasezero='+str(phasezero)+' '
    call += 'binmethod='+binmethod+' '
    call += 'threshold='+str(threshold)+' '
    call += 'niter='+str(niter)+' '
    call += 'nbins='+str(nbins)+' '
    plotres = 'n'
    if (plot): plotres = 'y'
    call += 'plot='+plotres+ ' '
    call += 'plotlab='+plotlab+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPFOLDIMG started at: ',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPFOLDIMG: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,infile,logfile,verbose)

# input data

    if status == 0:
        table = instr[1].data
        incards = instr[1].header.cards
        indata, status = kepio.readfitscol(infile,table,datacol,logfile,verbose)
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)

# filter out NaNs

    work1 = []; work2 = []
    if status == 0:
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and
                numpy.isfinite(indata[i]) and indata[i] != 0.0):
                work1.append(barytime[i])
                work2.append(indata[i])
        barytime = array(work1,dtype='float64')
        indata = array(work2,dtype='float32')

# calculate phase

    if status == 0:
        phase2 = []
        phase1 = (barytime - phasezero) / period
        for i in range(len(phase1)):
            phase2.append(phase1[i] - int(phase1[i]))
            if phase2[-1] < 0.0: phase2[-1] += 1.0
        phase2 = array(phase2,'float32')

# sort phases

    if status == 0:
        ptuple = []
        phase3 = []
        data3 = []
        for i in range(len(phase2)):
            ptuple.append([phase2[i], indata[i]])
        phsort = sorted(ptuple,key=lambda ph: ph[0])
        for i in range(len(phsort)):
            phase3.append(phsort[i][0])
            data3.append(phsort[i][1])
        phase3 = array(phase3,'float32')
        data3 = array(data3,'float32')

# bin phases

    if status == 0:
        work1 = array([data3[0]],'float32')
        phase4 = array([],'float32')
        data4 = array([],'float32')
        dt = (phase3[-1] - phase3[0]) / nbins
        nb = 0.0
        for i in range(len(phase3)):
            if phase3[i] < phase3[0] + nb * dt or phase3[i] >= phase3[0] + (nb + 1.0) * dt:
                if len(work1) > 0:
                    phase4 = append(phase4,phase3[0] + (nb + 0.5) * dt)
                    if (binmethod == 'mean'):
                        data4 = append(data4,kepstat.mean(work1))
                    elif (binmethod == 'median'):
                        data4 = append(data4,kepstat.median(work1,logfile))
                    else:
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[1.0],arange(0.0,float(len(work1)),1.0),work1,None,
                                           threshold,threshold,niter,logfile,verbose)
                        data4 = append(data4,coeffs[0])
                work1 = array([],'float32')
                nb += 1.0
            else:
                work1 = append(work1,data3[i])

# update HDU1 for output file

    if status == 0:
        cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)]))
        instr[1] = pyfits.new_table(cols)
        instr[1].header.cards['TTYPE20'].comment = 'column title: phase'
        instr[1].header.cards['TFORM20'].comment = 'data type: float32'
        for i in range(len(incards)):
            if incards[i].key not in instr[1].header.keys():
                instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment)
            else:
                instr[1].header.cards[incards[i].key].comment = incards[i].comment
        instr[1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]')

# write new phased data extension for output file

    if status == 0:
        col1 = Column(name='PHASE',format='E',array=phase4)
        col2 = Column(name=datacol,format='E',unit='e/s',array=data4/cadence)
        cols = ColDefs([col1,col2])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: phase'
        instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second'
        instr[-1].header.update('EXTNAME','FOLDED','extension name')
        instr[-1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]')
        instr[-1].header.update('BINMETHD',binmethod,'phase binning method')
        if binmethod =='sigclip':
            instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]')
            instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations')
    
# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)
        instr.writeto(outfile)

# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# clean up x-axis unit

    if status == 0:
        ptime = array([],'float32')
        pout = array([],'float32')
        work = data4
        for i in range(len(phase4)):
            if (phase4[i] > 0.5): 
                ptime = append(ptime,phase4[i] - 1.0)
                pout = append(pout,work[i] / cadence)
        ptime = append(ptime,phase4)
        pout = append(pout,work / cadence)
        for i in range(len(phase4)):
            if (phase4[i] <= 0.5): 
                ptime = append(ptime,phase4[i] + 1.0)
                pout = append(pout,work[i] / cadence)
	xlab = 'Phase ($\phi$)'

# clean up y-axis units

    if status == 0:
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot new light curve

    if status == 0 and plot:
        try:
           params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            print 'ERROR -- KEPFOLD: install latex for scientific plotting'
            status = 1
    if status == 0 and plot:
	pylab.figure(1,figsize=[17,7])
        pylab.clf()
        pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
        xlim(-0.49999,1.49999)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        pylab.draw()

# stop time

    kepmsg.clock('KEPFOLDIMG ended at: ',logfile,verbose)
Example #2
0
def kepfold(infile,outfile,period,phasezero,bindata,binmethod,threshold,niter,nbins,
            rejqual,plottype,plotlab,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 32; ticksize = 18; xsize = 18; ysize = 10
    lcolor = '#0000ff'; lwidth = 2.0; fcolor = '#ffff00'; falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFOLD -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'period='+str(period)+' '
    call += 'phasezero='+str(phasezero)+' '
    binit = 'n'
    if (bindata): binit = 'y'
    call += 'bindata='+binit+' '
    call += 'binmethod='+binmethod+' '
    call += 'threshold='+str(threshold)+' '
    call += 'niter='+str(niter)+' '
    call += 'nbins='+str(nbins)+' '
    qflag = 'n'
    if (rejqual): qflag = 'y'
    call += 'rejqual='+qflag+ ' '
    call += 'plottype='+plottype+ ' '
    call += 'plotlab='+plotlab+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPFOLD started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# input data

    if status == 0:
        table = instr[1].data
        incards = instr[1].header.cards
        try:
            sap = instr[1].data.field('SAP_FLUX')
        except:
            try:
                sap = instr[1].data.field('ap_raw_flux')
            except:
                sap = zeros(len(table.field(0)))
        try:
            saperr = instr[1].data.field('SAP_FLUX_ERR')
        except:
            try:
                saperr = instr[1].data.field('ap_raw_err')
            except:
                saperr = zeros(len(table.field(0)))
        try:
            pdc = instr[1].data.field('PDCSAP_FLUX')
        except:
            try:
                pdc = instr[1].data.field('ap_corr_flux')
            except:
                pdc = zeros(len(table.field(0)))
        try:
            pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR')
        except:
            try:
                pdcerr = instr[1].data.field('ap_corr_err')
            except:
                pdcerr = zeros(len(table.field(0)))
        try:
            cbv = instr[1].data.field('CBVSAP_FLUX')
        except:
            cbv = zeros(len(table.field(0)))
            if 'cbv' in plottype:
                txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            det = instr[1].data.field('DETSAP_FLUX')
        except:
            det = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            deterr = instr[1].data.field('DETSAP_FLUX_ERR')
        except:
            deterr = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten'
                status = kepmsg.err(logfile,txt,verbose)
        try:
            quality = instr[1].data.field('SAP_QUALITY')
        except:
            quality = zeros(len(table.field(0)))
            if qualflag:
                txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column'
                kepmsg.warn(logfile,txt)
    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        barytime1 = copy(barytime)


# filter out NaNs and quality > 0

    work1 = []; work2 = []; work3 = []; work4 = []; work5 = []; work6 = []; work8 = []; work9 = []
    if status == 0:
        if 'sap' in plottype:
            datacol = copy(sap)
            errcol = copy(saperr)
        if 'pdc' in plottype:
            datacol = copy(pdc)
            errcol = copy(pdcerr)
        if 'cbv' in plottype:
            datacol = copy(cbv)
            errcol = copy(saperr)
        if 'det' in plottype:
            datacol = copy(det)
            errcol = copy(deterr)
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and
                numpy.isfinite(datacol[i]) and datacol[i] != 0.0 and
                numpy.isfinite(errcol[i]) and errcol[i] > 0.0):
                if rejqual and quality[i] == 0:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
                elif not rejqual:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
        barytime = array(work1,dtype='float64')
        sap = array(work2,dtype='float32') / cadenom
        saperr = array(work3,dtype='float32') / cadenom
        pdc = array(work4,dtype='float32') / cadenom
        pdcerr = array(work5,dtype='float32') / cadenom
        cbv = array(work6,dtype='float32') / cadenom
        det = array(work8,dtype='float32') / cadenom
        deterr = array(work9,dtype='float32') / cadenom

# calculate phase

    if status == 0:
        if phasezero < bjdref:
            phasezero += bjdref
        date1 = (barytime1 + bjdref - phasezero)
        phase1 = (date1 / period) - floor(date1/period)
        date2 = (barytime + bjdref - phasezero)
        phase2 = (date2 / period) - floor(date2/period)
        phase2 = array(phase2,'float32')

# sort phases

    if status == 0:
        ptuple = []
        phase3 = []; 
        sap3 = []; saperr3 = []
        pdc3 = []; pdcerr3 = []
        cbv3 = []; cbverr3 = []
        det3 = []; deterr3 = []
        for i in range(len(phase2)):
            ptuple.append([phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i], saperr[i], det[i], deterr[i]])
        phsort = sorted(ptuple,key=lambda ph: ph[0])
        for i in range(len(phsort)):
            phase3.append(phsort[i][0])
            sap3.append(phsort[i][1])
            saperr3.append(phsort[i][2])
            pdc3.append(phsort[i][3])
            pdcerr3.append(phsort[i][4])
            cbv3.append(phsort[i][5])
            cbverr3.append(phsort[i][6])
            det3.append(phsort[i][7])
            deterr3.append(phsort[i][8])
        phase3 = array(phase3,'float32')
        sap3 = array(sap3,'float32')
        saperr3 = array(saperr3,'float32')
        pdc3 = array(pdc3,'float32')
        pdcerr3 = array(pdcerr3,'float32')
        cbv3 = array(cbv3,'float32')
        cbverr3 = array(cbverr3,'float32')
        det3 = array(det3,'float32')
        deterr3 = array(deterr3,'float32')

# bin phases

    if status == 0 and bindata:
        work1 = array([sap3[0]],'float32')
        work2 = array([saperr3[0]],'float32')
        work3 = array([pdc3[0]],'float32')
        work4 = array([pdcerr3[0]],'float32')
        work5 = array([cbv3[0]],'float32')
        work6 = array([cbverr3[0]],'float32')
        work7 = array([det3[0]],'float32')
        work8 = array([deterr3[0]],'float32')
        phase4 = array([],'float32')
        sap4 = array([],'float32')
        saperr4 = array([],'float32')
        pdc4 = array([],'float32')
        pdcerr4 = array([],'float32')
        cbv4 = array([],'float32')
        cbverr4 = array([],'float32')
        det4 = array([],'float32')
        deterr4 = array([],'float32')
        dt = 1.0 / nbins
        nb = 0.0
        rng = numpy.append(phase3,phase3[0]+1.0)
        for i in range(len(rng)):
            if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt:
                if len(work1) > 0:
                    phase4 = append(phase4,(nb + 0.5) * dt)
                    if (binmethod == 'mean'):
                        sap4 = append(sap4,kepstat.mean(work1))
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        pdc4 = append(pdc4,kepstat.mean(work3))
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        cbv4 = append(cbv4,kepstat.mean(work5))
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        det4 = append(det4,kepstat.mean(work7))
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                    elif (binmethod == 'median'):
                        sap4 = append(sap4,kepstat.median(work1,logfile))
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        pdc4 = append(pdc4,kepstat.median(work3,logfile))
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        cbv4 = append(cbv4,kepstat.median(work5,logfile))
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        det4 = append(det4,kepstat.median(work7,logfile))
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                    else:
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2,
                                           threshold,threshold,niter,logfile,False)
                        sap4 = append(sap4,coeffs[0])
                        saperr4 = append(saperr4,kepstat.mean_err(work2))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4,
                                           threshold,threshold,niter,logfile,False)
                        pdc4 = append(pdc4,coeffs[0])
                        pdcerr4 = append(pdcerr4,kepstat.mean_err(work4))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6,
                                           threshold,threshold,niter,logfile,False)
                        cbv4 = append(cbv4,coeffs[0])
                        cbverr4 = append(cbverr4,kepstat.mean_err(work6))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8,
                                           threshold,threshold,niter,logfile,False)
                        det4 = append(det4,coeffs[0])
                        deterr4 = append(deterr4,kepstat.mean_err(work8))
                work1 = array([],'float32')
                work2 = array([],'float32')
                work3 = array([],'float32')
                work4 = array([],'float32')
                work5 = array([],'float32')
                work6 = array([],'float32')
                work7 = array([],'float32')
                work8 = array([],'float32')
                nb += 1.0
            else:
                work1 = append(work1,sap3[i])
                work2 = append(work2,saperr3[i])
                work3 = append(work3,pdc3[i])
                work4 = append(work4,pdcerr3[i])
                work5 = append(work5,cbv3[i])
                work6 = append(work6,cbverr3[i])
                work7 = append(work7,det3[i])
                work8 = append(work8,deterr3[i])

# update HDU1 for output file

    if status == 0:

        cols = (instr[1].columns + ColDefs([Column(name='PHASE',format='E',array=phase1)]))
        instr[1] = pyfits.new_table(cols)
        instr[1].header.cards['TTYPE'+str(len(instr[1].columns))].comment = 'column title: phase'
        instr[1].header.cards['TFORM'+str(len(instr[1].columns))].comment = 'data type: float32'
        for i in range(len(incards)):
            if incards[i].key not in instr[1].header.keys():
                instr[1].header.update(incards[i].key, incards[i].value, incards[i].comment)
            else:
                instr[1].header.cards[incards[i].key].comment = incards[i].comment
        instr[1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[1].header.update('BJD0',phasezero,'time of phase zero [BJD]')

# write new phased data extension for output file

    if status == 0 and bindata:
        col1 = Column(name='PHASE',format='E',array=phase4)
        col2 = Column(name='SAP_FLUX',format='E',unit='e/s',array=sap4/cadenom)
        col3 = Column(name='SAP_FLUX_ERR',format='E',unit='e/s',array=saperr4/cadenom)
        col4 = Column(name='PDC_FLUX',format='E',unit='e/s',array=pdc4/cadenom)
        col5 = Column(name='PDC_FLUX_ERR',format='E',unit='e/s',array=pdcerr4/cadenom)
        col6 = Column(name='CBV_FLUX',format='E',unit='e/s',array=cbv4/cadenom)
        col7 = Column(name='DET_FLUX',format='E',array=det4/cadenom)
        col8 = Column(name='DET_FLUX_ERR',format='E',array=deterr4/cadenom)
        cols = ColDefs([col1,col2,col3,col4,col5,col6,col7,col8])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: phase'
        instr[-1].header.cards['TTYPE2'].comment = 'column title: simple aperture photometry'
        instr[-1].header.cards['TTYPE3'].comment = 'column title: SAP 1-sigma error'
        instr[-1].header.cards['TTYPE4'].comment = 'column title: pipeline conditioned photometry'
        instr[-1].header.cards['TTYPE5'].comment = 'column title: PDC 1-sigma error'
        instr[-1].header.cards['TTYPE6'].comment = 'column title: cotrended basis vector photometry'
        instr[-1].header.cards['TTYPE7'].comment = 'column title: Detrended aperture photometry'
        instr[-1].header.cards['TTYPE8'].comment = 'column title: DET 1-sigma error'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM5'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM6'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM7'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM8'].comment = 'column type: float32'
        instr[-1].header.cards['TUNIT2'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT3'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT4'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT5'].comment = 'column units: electrons per second'
        instr[-1].header.cards['TUNIT6'].comment = 'column units: electrons per second'
        instr[-1].header.update('EXTNAME','FOLDED','extension name')
        instr[-1].header.update('PERIOD',period,'period defining the phase [d]')
        instr[-1].header.update('BJD0',phasezero,'time of phase zero [BJD]')
        instr[-1].header.update('BINMETHD',binmethod,'phase binning method')
        if binmethod =='sigclip':
            instr[-1].header.update('THRSHOLD',threshold,'sigma-clipping threshold [sigma]')
            instr[-1].header.update('NITER',niter,'max number of sigma-clipping iterations')
    
# history keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)
        instr.writeto(outfile)

# clean up x-axis unit

    if status == 0:
        ptime1 = array([],'float32')
        ptime2 = array([],'float32')
        pout1 = array([],'float32')
        pout2 = array([],'float32')
        if bindata:
            work = sap4
            if plottype == 'pdc':
                work = pdc4
            if plottype == 'cbv':
                work = cbv4
            if plottype == 'det':
                work = det4
            for i in range(len(phase4)):
                if (phase4[i] > 0.5): 
                    ptime2 = append(ptime2,phase4[i] - 1.0)
                    pout2 = append(pout2,work[i])
            ptime2 = append(ptime2,phase4)
            pout2 = append(pout2,work)
            for i in range(len(phase4)):
                if (phase4[i] <= 0.5): 
                    ptime2 = append(ptime2,phase4[i] + 1.0)
                    pout2 = append(pout2,work[i])
        work = sap3
        if plottype == 'pdc':
            work = pdc3
        if plottype == 'cbv':
            work = cbv3
        if plottype == 'det':
            work = det3
        for i in range(len(phase3)):
            if (phase3[i] > 0.5): 
                ptime1 = append(ptime1,phase3[i] - 1.0)
                pout1 = append(pout1,work[i])
        ptime1 = append(ptime1,phase3)
        pout1 = append(pout1,work)
        for i in range(len(phase3)):
            if (phase3[i] <= 0.5): 
                ptime1 = append(ptime1,phase3[i] + 1.0)
                pout1 = append(pout1,work[i])
    xlab = 'Orbital Phase ($\phi$)'

# clean up y-axis units

    if status == 0:

        nrm = len(str(int(pout1[isfinite(pout1)].max())))-1


        pout1 = pout1 / 10**nrm
        pout2 = pout2 / 10**nrm
        if nrm == 0:
            ylab = plotlab
        else:
            ylab = '10$^%d$ %s' % (nrm, plotlab)

# data limits

        xmin = ptime1.min()
        xmax = ptime1.max()
        ymin = pout1[isfinite(pout1)].min()
        ymax = pout1[isfinite(pout1)].max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime1 = insert(ptime1,[0],[ptime1[0]]) 
        ptime1 = append(ptime1,[ptime1[-1]])
        pout1 = insert(pout1,[0],[0.0]) 
        pout1 = append(pout1,0.0)
        if bindata:
            ptime2 = insert(ptime2,[0],ptime2[0] - 1.0 / nbins) 
            ptime2 = insert(ptime2,[0],ptime2[0]) 
            ptime2 = append(ptime2,[ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins])
            pout2 = insert(pout2,[0],[pout2[-1]]) 
            pout2 = insert(pout2,[0],[0.0]) 
            pout2 = append(pout2,[pout2[2],0.0])

# plot new light curve

    if status == 0 and plottype != 'none':
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 18,
                      'legend.fontsize': 18,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            pylab.rcParams.update(params)
        except:
            print 'ERROR -- KEPFOLD: install latex for scientific plotting'
            status = 1
    if status == 0 and plottype != 'none':
	pylab.figure(figsize=[17,7])
        pylab.clf()
        ax = pylab.axes([0.06,0.11,0.93,0.86])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)
        if bindata:
            pylab.fill(ptime2,pout2,color=fcolor,linewidth=0.0,alpha=falpha)
        else:
            if 'det' in plottype:
                pylab.fill(ptime1,pout1,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime1,pout1,color=lcolor,linestyle='',linewidth=lwidth,marker='.')
        if bindata:
            pylab.plot(ptime2[1:-1],pout2[1:-1],color='r',linestyle='-',linewidth=lwidth,marker='')
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
        xlim(-0.49999,1.49999)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
#            ylim(0.96001,1.03999)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        grid()
        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# stop time

    kepmsg.clock('KEPFOLD ended at: ',logfile,verbose)
Example #3
0
def kepfold(infile,
            outfile,
            period,
            phasezero,
            bindata,
            binmethod,
            threshold,
            niter,
            nbins,
            rejqual,
            plottype,
            plotlab,
            clobber,
            verbose,
            logfile,
            status,
            cmdLine=False):

    # startup parameters

    status = 0
    labelsize = 32
    ticksize = 18
    xsize = 18
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 2.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPFOLD -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'period=' + str(period) + ' '
    call += 'phasezero=' + str(phasezero) + ' '
    binit = 'n'
    if (bindata): binit = 'y'
    call += 'bindata=' + binit + ' '
    call += 'binmethod=' + binmethod + ' '
    call += 'threshold=' + str(threshold) + ' '
    call += 'niter=' + str(niter) + ' '
    call += 'nbins=' + str(nbins) + ' '
    qflag = 'n'
    if (rejqual): qflag = 'y'
    call += 'rejqual=' + qflag + ' '
    call += 'plottype=' + plottype + ' '
    call += 'plotlab=' + plotlab + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPFOLD started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPFOLD: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# input data

    if status == 0:
        table = instr[1].data
        incards = instr[1].header.cards
        try:
            sap = instr[1].data.field('SAP_FLUX')
        except:
            try:
                sap = instr[1].data.field('ap_raw_flux')
            except:
                sap = zeros(len(table.field(0)))
        try:
            saperr = instr[1].data.field('SAP_FLUX_ERR')
        except:
            try:
                saperr = instr[1].data.field('ap_raw_err')
            except:
                saperr = zeros(len(table.field(0)))
        try:
            pdc = instr[1].data.field('PDCSAP_FLUX')
        except:
            try:
                pdc = instr[1].data.field('ap_corr_flux')
            except:
                pdc = zeros(len(table.field(0)))
        try:
            pdcerr = instr[1].data.field('PDCSAP_FLUX_ERR')
        except:
            try:
                pdcerr = instr[1].data.field('ap_corr_err')
            except:
                pdcerr = zeros(len(table.field(0)))
        try:
            cbv = instr[1].data.field('CBVSAP_FLUX')
        except:
            cbv = zeros(len(table.field(0)))
            if 'cbv' in plottype:
                txt = 'ERROR -- KEPFOLD: CBVSAP_FLUX column is not populated. Use kepcotrend'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            det = instr[1].data.field('DETSAP_FLUX')
        except:
            det = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX column is not populated. Use kepflatten'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            deterr = instr[1].data.field('DETSAP_FLUX_ERR')
        except:
            deterr = zeros(len(table.field(0)))
            if 'det' in plottype:
                txt = 'ERROR -- KEPFOLD: DETSAP_FLUX_ERR column is not populated. Use kepflatten'
                status = kepmsg.err(logfile, txt, verbose)
        try:
            quality = instr[1].data.field('SAP_QUALITY')
        except:
            quality = zeros(len(table.field(0)))
            if qualflag:
                txt = 'WARNING -- KEPFOLD: Cannot find a QUALITY data column'
                kepmsg.warn(logfile, txt)
    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
        barytime1 = copy(barytime)

# filter out NaNs and quality > 0

    work1 = []
    work2 = []
    work3 = []
    work4 = []
    work5 = []
    work6 = []
    work8 = []
    work9 = []
    if status == 0:
        if 'sap' in plottype:
            datacol = copy(sap)
            errcol = copy(saperr)
        if 'pdc' in plottype:
            datacol = copy(pdc)
            errcol = copy(pdcerr)
        if 'cbv' in plottype:
            datacol = copy(cbv)
            errcol = copy(saperr)
        if 'det' in plottype:
            datacol = copy(det)
            errcol = copy(deterr)
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and numpy.isfinite(datacol[i])
                    and datacol[i] != 0.0 and numpy.isfinite(errcol[i])
                    and errcol[i] > 0.0):
                if rejqual and quality[i] == 0:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
                elif not rejqual:
                    work1.append(barytime[i])
                    work2.append(sap[i])
                    work3.append(saperr[i])
                    work4.append(pdc[i])
                    work5.append(pdcerr[i])
                    work6.append(cbv[i])
                    work8.append(det[i])
                    work9.append(deterr[i])
        barytime = array(work1, dtype='float64')
        sap = array(work2, dtype='float32') / cadenom
        saperr = array(work3, dtype='float32') / cadenom
        pdc = array(work4, dtype='float32') / cadenom
        pdcerr = array(work5, dtype='float32') / cadenom
        cbv = array(work6, dtype='float32') / cadenom
        det = array(work8, dtype='float32') / cadenom
        deterr = array(work9, dtype='float32') / cadenom

# calculate phase

    if status == 0:
        if phasezero < bjdref:
            phasezero += bjdref
        date1 = (barytime1 + bjdref - phasezero)
        phase1 = (date1 / period) - floor(date1 / period)
        date2 = (barytime + bjdref - phasezero)
        phase2 = (date2 / period) - floor(date2 / period)
        phase2 = array(phase2, 'float32')

# sort phases

    if status == 0:
        ptuple = []
        phase3 = []
        sap3 = []
        saperr3 = []
        pdc3 = []
        pdcerr3 = []
        cbv3 = []
        cbverr3 = []
        det3 = []
        deterr3 = []
        for i in range(len(phase2)):
            ptuple.append([
                phase2[i], sap[i], saperr[i], pdc[i], pdcerr[i], cbv[i],
                saperr[i], det[i], deterr[i]
            ])
        phsort = sorted(ptuple, key=lambda ph: ph[0])
        for i in range(len(phsort)):
            phase3.append(phsort[i][0])
            sap3.append(phsort[i][1])
            saperr3.append(phsort[i][2])
            pdc3.append(phsort[i][3])
            pdcerr3.append(phsort[i][4])
            cbv3.append(phsort[i][5])
            cbverr3.append(phsort[i][6])
            det3.append(phsort[i][7])
            deterr3.append(phsort[i][8])
        phase3 = array(phase3, 'float32')
        sap3 = array(sap3, 'float32')
        saperr3 = array(saperr3, 'float32')
        pdc3 = array(pdc3, 'float32')
        pdcerr3 = array(pdcerr3, 'float32')
        cbv3 = array(cbv3, 'float32')
        cbverr3 = array(cbverr3, 'float32')
        det3 = array(det3, 'float32')
        deterr3 = array(deterr3, 'float32')

# bin phases

    if status == 0 and bindata:
        work1 = array([sap3[0]], 'float32')
        work2 = array([saperr3[0]], 'float32')
        work3 = array([pdc3[0]], 'float32')
        work4 = array([pdcerr3[0]], 'float32')
        work5 = array([cbv3[0]], 'float32')
        work6 = array([cbverr3[0]], 'float32')
        work7 = array([det3[0]], 'float32')
        work8 = array([deterr3[0]], 'float32')
        phase4 = array([], 'float32')
        sap4 = array([], 'float32')
        saperr4 = array([], 'float32')
        pdc4 = array([], 'float32')
        pdcerr4 = array([], 'float32')
        cbv4 = array([], 'float32')
        cbverr4 = array([], 'float32')
        det4 = array([], 'float32')
        deterr4 = array([], 'float32')
        dt = 1.0 / nbins
        nb = 0.0
        rng = numpy.append(phase3, phase3[0] + 1.0)
        for i in range(len(rng)):
            if rng[i] < nb * dt or rng[i] >= (nb + 1.0) * dt:
                if len(work1) > 0:
                    phase4 = append(phase4, (nb + 0.5) * dt)
                    if (binmethod == 'mean'):
                        sap4 = append(sap4, kepstat.mean(work1))
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        pdc4 = append(pdc4, kepstat.mean(work3))
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        cbv4 = append(cbv4, kepstat.mean(work5))
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        det4 = append(det4, kepstat.mean(work7))
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                    elif (binmethod == 'median'):
                        sap4 = append(sap4, kepstat.median(work1, logfile))
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        pdc4 = append(pdc4, kepstat.median(work3, logfile))
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        cbv4 = append(cbv4, kepstat.median(work5, logfile))
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        det4 = append(det4, kepstat.median(work7, logfile))
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                    else:
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work1)],arange(0.0,float(len(work1)),1.0),work1,work2,
                                           threshold,threshold,niter,logfile,False)
                        sap4 = append(sap4, coeffs[0])
                        saperr4 = append(saperr4, kepstat.mean_err(work2))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work3)],arange(0.0,float(len(work3)),1.0),work3,work4,
                                           threshold,threshold,niter,logfile,False)
                        pdc4 = append(pdc4, coeffs[0])
                        pdcerr4 = append(pdcerr4, kepstat.mean_err(work4))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work5)],arange(0.0,float(len(work5)),1.0),work5,work6,
                                           threshold,threshold,niter,logfile,False)
                        cbv4 = append(cbv4, coeffs[0])
                        cbverr4 = append(cbverr4, kepstat.mean_err(work6))
                        coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                            kepfit.lsqclip('poly0',[scipy.stats.nanmean(work7)],arange(0.0,float(len(work7)),1.0),work7,work8,
                                           threshold,threshold,niter,logfile,False)
                        det4 = append(det4, coeffs[0])
                        deterr4 = append(deterr4, kepstat.mean_err(work8))
                work1 = array([], 'float32')
                work2 = array([], 'float32')
                work3 = array([], 'float32')
                work4 = array([], 'float32')
                work5 = array([], 'float32')
                work6 = array([], 'float32')
                work7 = array([], 'float32')
                work8 = array([], 'float32')
                nb += 1.0
            else:
                work1 = append(work1, sap3[i])
                work2 = append(work2, saperr3[i])
                work3 = append(work3, pdc3[i])
                work4 = append(work4, pdcerr3[i])
                work5 = append(work5, cbv3[i])
                work6 = append(work6, cbverr3[i])
                work7 = append(work7, det3[i])
                work8 = append(work8, deterr3[i])

# update HDU1 for output file

    if status == 0:

        cols = (instr[1].columns +
                ColDefs([Column(name='PHASE', format='E', array=phase1)]))
        instr[1] = pyfits.new_table(cols)
        instr[1].header.cards[
            'TTYPE' +
            str(len(instr[1].columns))].comment = 'column title: phase'
        instr[1].header.cards[
            'TFORM' +
            str(len(instr[1].columns))].comment = 'data type: float32'
        for i in range(len(incards)):
            if incards[i].key not in list(instr[1].header.keys()):
                instr[1].header.update(incards[i].key, incards[i].value,
                                       incards[i].comment)
            else:
                instr[1].header.cards[
                    incards[i].key].comment = incards[i].comment
        instr[1].header.update('PERIOD', period,
                               'period defining the phase [d]')
        instr[1].header.update('BJD0', phasezero, 'time of phase zero [BJD]')

# write new phased data extension for output file

    if status == 0 and bindata:
        col1 = Column(name='PHASE', format='E', array=phase4)
        col2 = Column(name='SAP_FLUX',
                      format='E',
                      unit='e/s',
                      array=sap4 / cadenom)
        col3 = Column(name='SAP_FLUX_ERR',
                      format='E',
                      unit='e/s',
                      array=saperr4 / cadenom)
        col4 = Column(name='PDC_FLUX',
                      format='E',
                      unit='e/s',
                      array=pdc4 / cadenom)
        col5 = Column(name='PDC_FLUX_ERR',
                      format='E',
                      unit='e/s',
                      array=pdcerr4 / cadenom)
        col6 = Column(name='CBV_FLUX',
                      format='E',
                      unit='e/s',
                      array=cbv4 / cadenom)
        col7 = Column(name='DET_FLUX', format='E', array=det4 / cadenom)
        col8 = Column(name='DET_FLUX_ERR', format='E', array=deterr4 / cadenom)
        cols = ColDefs([col1, col2, col3, col4, col5, col6, col7, col8])
        instr.append(new_table(cols))
        instr[-1].header.cards['TTYPE1'].comment = 'column title: phase'
        instr[-1].header.cards[
            'TTYPE2'].comment = 'column title: simple aperture photometry'
        instr[-1].header.cards[
            'TTYPE3'].comment = 'column title: SAP 1-sigma error'
        instr[-1].header.cards[
            'TTYPE4'].comment = 'column title: pipeline conditioned photometry'
        instr[-1].header.cards[
            'TTYPE5'].comment = 'column title: PDC 1-sigma error'
        instr[-1].header.cards[
            'TTYPE6'].comment = 'column title: cotrended basis vector photometry'
        instr[-1].header.cards[
            'TTYPE7'].comment = 'column title: Detrended aperture photometry'
        instr[-1].header.cards[
            'TTYPE8'].comment = 'column title: DET 1-sigma error'
        instr[-1].header.cards['TFORM1'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM2'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM3'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM4'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM5'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM6'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM7'].comment = 'column type: float32'
        instr[-1].header.cards['TFORM8'].comment = 'column type: float32'
        instr[-1].header.cards[
            'TUNIT2'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT3'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT4'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT5'].comment = 'column units: electrons per second'
        instr[-1].header.cards[
            'TUNIT6'].comment = 'column units: electrons per second'
        instr[-1].header.update('EXTNAME', 'FOLDED', 'extension name')
        instr[-1].header.update('PERIOD', period,
                                'period defining the phase [d]')
        instr[-1].header.update('BJD0', phasezero, 'time of phase zero [BJD]')
        instr[-1].header.update('BINMETHD', binmethod, 'phase binning method')
        if binmethod == 'sigclip':
            instr[-1].header.update('THRSHOLD', threshold,
                                    'sigma-clipping threshold [sigma]')
            instr[-1].header.update('NITER', niter,
                                    'max number of sigma-clipping iterations')

# history keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)
        instr.writeto(outfile)

# clean up x-axis unit

    if status == 0:
        ptime1 = array([], 'float32')
        ptime2 = array([], 'float32')
        pout1 = array([], 'float32')
        pout2 = array([], 'float32')
        if bindata:
            work = sap4
            if plottype == 'pdc':
                work = pdc4
            if plottype == 'cbv':
                work = cbv4
            if plottype == 'det':
                work = det4
            for i in range(len(phase4)):
                if (phase4[i] > 0.5):
                    ptime2 = append(ptime2, phase4[i] - 1.0)
                    pout2 = append(pout2, work[i])
            ptime2 = append(ptime2, phase4)
            pout2 = append(pout2, work)
            for i in range(len(phase4)):
                if (phase4[i] <= 0.5):
                    ptime2 = append(ptime2, phase4[i] + 1.0)
                    pout2 = append(pout2, work[i])
        work = sap3
        if plottype == 'pdc':
            work = pdc3
        if plottype == 'cbv':
            work = cbv3
        if plottype == 'det':
            work = det3
        for i in range(len(phase3)):
            if (phase3[i] > 0.5):
                ptime1 = append(ptime1, phase3[i] - 1.0)
                pout1 = append(pout1, work[i])
        ptime1 = append(ptime1, phase3)
        pout1 = append(pout1, work)
        for i in range(len(phase3)):
            if (phase3[i] <= 0.5):
                ptime1 = append(ptime1, phase3[i] + 1.0)
                pout1 = append(pout1, work[i])
    xlab = 'Orbital Phase ($\phi$)'

    # clean up y-axis units

    if status == 0:

        nrm = len(str(int(pout1[isfinite(pout1)].max()))) - 1

        pout1 = pout1 / 10**nrm
        pout2 = pout2 / 10**nrm
        if nrm == 0:
            ylab = plotlab
        else:
            ylab = '10$^%d$ %s' % (nrm, plotlab)

# data limits

        xmin = ptime1.min()
        xmax = ptime1.max()
        ymin = pout1[isfinite(pout1)].min()
        ymax = pout1[isfinite(pout1)].max()
        xr = xmax - xmin
        yr = ymax - ymin
        ptime1 = insert(ptime1, [0], [ptime1[0]])
        ptime1 = append(ptime1, [ptime1[-1]])
        pout1 = insert(pout1, [0], [0.0])
        pout1 = append(pout1, 0.0)
        if bindata:
            ptime2 = insert(ptime2, [0], ptime2[0] - 1.0 / nbins)
            ptime2 = insert(ptime2, [0], ptime2[0])
            ptime2 = append(
                ptime2, [ptime2[-1] + 1.0 / nbins, ptime2[-1] + 1.0 / nbins])
            pout2 = insert(pout2, [0], [pout2[-1]])
            pout2 = insert(pout2, [0], [0.0])
            pout2 = append(pout2, [pout2[2], 0.0])

# plot new light curve

    if status == 0 and plottype != 'none':
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 18,
                'legend.fontsize': 18,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            pylab.rcParams.update(params)
        except:
            print('ERROR -- KEPFOLD: install latex for scientific plotting')
            status = 1
    if status == 0 and plottype != 'none':
        pylab.figure(figsize=[17, 7])
        pylab.clf()
        ax = pylab.axes([0.06, 0.11, 0.93, 0.86])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)
        if bindata:
            pylab.fill(ptime2,
                       pout2,
                       color=fcolor,
                       linewidth=0.0,
                       alpha=falpha)
        else:
            if 'det' in plottype:
                pylab.fill(ptime1,
                           pout1,
                           color=fcolor,
                           linewidth=0.0,
                           alpha=falpha)
        pylab.plot(ptime1,
                   pout1,
                   color=lcolor,
                   linestyle='',
                   linewidth=lwidth,
                   marker='.')
        if bindata:
            pylab.plot(ptime2[1:-1],
                       pout2[1:-1],
                       color='r',
                       linestyle='-',
                       linewidth=lwidth,
                       marker='')
        xlabel(xlab, {'color': 'k'})
        ylabel(ylab, {'color': 'k'})
        xlim(-0.49999, 1.49999)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
#            ylim(0.96001,1.03999)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        grid()
        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# stop time

    kepmsg.clock('KEPFOLD ended at: ', logfile, verbose)