Example #1
0
def image_classification(paths):
    classification_dict = {}
    model = MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, include_top=True, weights='imagenet', input_tensor=None, pooling=None, classes=1000)
    for path in paths:
        image = mnetv2_loadimage(path)
        preds = model.predict(image)
        prediction = decode_predictions(preds, top=1)[0][0]
        img_class = prediction[1]
        img_confidence = prediction[2]
        if img_class in classification_dict:
            classification_dict[img_class].append((path, img_confidence))
        else:
            classification_dict[img_class] = [(path, img_confidence)]
    return classification_dict
Example #2
0
class MobileNetWrapper(object):
    def __init__(self):
        logger.info('Loading MobileNet')
        self.model = MobileNet(weights='imagenet')

    def predict(self, img):
        """ # Arguments
                img: a numpy array

            # Returns
                A dict containing predictions
            """
        img = Image.fromarray(img)
        img = img.resize((224, 224))
        x = keras_image.img_to_array(img)[:, :, :3]
        x = np.expand_dims(x, axis=0)
        x = preprocess_input_mobilenet(x)

        features = self.model.predict(x)
        predictions = decode_predictions_mobilenet(features)[0]
        clean_predictions = [{'score': str(k), 'class': j} for (i, j, k) in predictions]

        return json.dumps(clean_predictions)
# In[ ]:

training_set_mobilenet_features = []
for i in list(range(1, 401)) + list(range(501, 901)):
    img_path = 'test8/%06d.png' % i
    # print(img_path)
    img = image.load_img(img_path, target_size=(224, 224))  # 读取图片

    #plt.imshow(img)
    #plt.show()# 显示图片
    x = image.img_to_array(img)  # 图片转换为ndarray
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)  # 数组转换为mobilenet输入格式

    training_set_mobilenet_features.append(
        model_mobilenet.predict(x).reshape((7 * 7 * 1024, )))  # 计算该张图片的特征

# In[ ]:

training_set_mobilenet_features_ndarray = np.vstack(
    training_set_mobilenet_features)  # 转换为ndarray

# In[ ]:

training_set_label = np.array([1.0 if i < 400 else 0.0 for i in range(800)])

# In[ ]:

test_set_mobilenet_features = []
for i in list(range(401, 501)) + list(range(901, 1001)):
    img_path = 'test8/%06d.png' % i
Example #4
0
   
  for _ in camera.capture_continuous(
         stream, format='jpeg', use_video_port=True):  #start to capture frames from the preview
         stream.seek(0)      #begin from the first position of the buffer
         img_ov = Image.new("RGBA", (CAMERA_WIDTH,CAMERA_HEIGHT)) #create the overlay using the same resolution of the camera
         draw = ImageDraw.Draw(img_ov)  #we are going to write on this overlay
         draw.font = ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeSans.ttf", 20)
         draw.rectangle([5,5,CAMERA_WIDTH-5,CAMERA_HEIGHT-5], fill=None, outline="red") #a purely decorative choice
         img = Image.open(stream).convert('RGB').resize((224, 224))  #we modify the frame to give it as input to the model
     
     #we then give the frame to the model and calculate the inference time
         x = image.img_to_array(img)
         x = np.expand_dims(x, axis=0) 
         x = preprocess_input(x)
         start_time = time.monotonic()
         preds = model.predict(x)
         elapsed_ms = (time.monotonic() - start_time) * 1000
         preds= decode_predictions(preds)
         
     # we write the first two output probabilities onto the overlay
         draw.multiline_text((8,40), str(preds[0][0][1])+"\n"+str('%.1f' % ((preds[0][0][2])*100))+
                          " % \n", fill=(255,0,0,255), font=None, anchor=None, spacing=5, align="left")
         draw.multiline_text((8,85), str(preds[0][1][1])+"\n"+str('%.1f' % ((preds[0][1][2])*100))+
                          " % \n", fill=(255,0,0,255), font=None, anchor=None, spacing=5, align="left")
         draw.text((8,8),str('%.1f ms' % (elapsed_ms)), fill="red", font=None, anchor=None)
 
         if not overlay_renderer:
             """
             If overlay layer is not created yet, get a new one. Layer
             parameter must have 3 or higher number because the original
             preview layer has a # of 2 and a layer with smaller number will
camera = picamera.PiCamera()
camera.resolution = (224, 224)

model = MobileNet(weights='imagenet')
devnull = open('os.devnull', 'w')

i = 1
while True:
    camera.capture("img.jpg")
    img = image.load_img("img.jpg", target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)

    pred = model.predict(x)
    word = decode_predictions(pred)[0][0][1].replace('_', ' ')
    word2 = decode_predictions(pred)[0][1][1].replace('_', ' ')
    speak = "Okay I got it. I believe I'm looking at some kind of {} or {}".format(
        word, word2)
    print(speak)
    os.rename('img.jpg',
              'outputs/mobilenet/{}-{}-{}.jpg'.format(i, word, word2))
    subprocess.run([
        'pico2wave', '-w', 'outputs/mobilenet/{}-result.wav'.format(i),
        "{}".format(speak)
    ],
                   stdout=devnull,
                   stderr=subprocess.STDOUT)
    subprocess.call(['aplay', 'outputs/mobilenet/{}-result.wav'.format(i)])
    print()
Example #6
0
        
    return result

# load the MobileNet model 
model_features = MobileNet(input_shape=(IMG_WIDTH, IMG_HEIGHT, 3),
                               include_top=False, 
                               weights='imagenet')

img_path = 'test.png'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# get the bottleneck features from the mobilenet
bottleneck_features = model_features.predict(x)

# load our classfier model
model_classification = load_model(TOP_MODEL_PATH)

# use the bottleneck features to get the final classification
class_predicted = model_classification.predict(bottleneck_features)

#print('Predicted:', decode_predictions(preds, top=3)[0])
preds = decode_lights_predictions(class_predicted)

print(preds)

"""
orig = cv2.imread(img_path)
Example #7
0
from picamera.array import PiRGBArray
from picamera import PiCamera

model = MobileNet(weights='imagenet')
print "Load model successfully"

camera = PiCamera()
camera.resolution = (600, 600)
camera.framerate = 32
cap = PiRGBArray(camera, size=(600, 600))
print "Start video stream"

for i in camera.capture_continuous(cap, format='bgr', use_video_port=True):
    frame = i.array

    image = cv2.resize(frame, (224, 224))
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = preprocess_input(img)
    preds = model.predict(img)

    cv2.putText(frame,
                'Predicted: ' + str(decode_predictions(preds, top=1)[0]),
                (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)

    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
    cap.truncate(0)
    if key == ord('q'):
        break
img_mobilenet = load_img(img_mobilenet_pth, target_size=(
    224, 224))  # image size can be calibrated with target_size parameter
img_mobilenet

img_mobilenet = img_to_array(img_mobilenet)
print(img_mobilenet.shape)

img_mobilenet = np.expand_dims(img_mobilenet, axis=0)
print(img_mobilenet.shape)

img_mobilenet = preprocess_input(
    img_mobilenet)  # preprocess image with preprocess_input function
print(img_mobilenet.shape)

## prediction with preprocessing
pred_mobilenet = model_mobilenet.predict(img_mobilenet)
# print(pred_class)

n = 10
top_n_mobilenet = decode_predictions(pred_mobilenet, top=n)

for b in top_n_mobilenet[0]:
    print(b)

##4
#using VGG16 MODEL

from keras.applications.vgg16 import VGG16
model_vgg16 = VGG16()

#load image
class AppearanceFeaturesExtractor(object):
    """
    """
    def __init__(self,
                 model_type="MobileNet",
                 weights="imagenet",
                 input_shape=(128, 128, 3)):
        """
        """
        model_types = ["MobileNet", "MobileNetV2", "VGG16", "ResNet50"]
        weights_types = ["imagenet", "random"]
        if weights not in weights_types:
            raise ValueError(
                "Invalid weights. Should be one of: {}".format(weights_types))
        if model_type not in model_types:
            raise ValueError(
                "Invalid model type. Should be one of: {}".format(model_types))
        assert input_shape[0] > 32
        assert input_shape[1] > 32

        self.input_shape = input_shape

        if model_type == "MobileNet":
            self.model = MobileNet(weights=weights,
                                   include_top=False,
                                   pooling='avg',
                                   input_shape=input_shape)
        if model_type == "MobileNetV2":
            self.model = MobileNetV2(weights=weights,
                                     include_top=False,
                                     pooling='avg',
                                     input_shape=input_shape)
        if model_type == "VGG16":
            self.model = VGG16(weights=weights,
                               include_top=False,
                               pooling='avg',
                               input_shape=input_shape)
        if model_type == "ResNet50":
            self.model = ResNet50(weights=weights,
                                  include_top=False,
                                  pooling='avg',
                                  input_shape=input_shape)

    def extract(self, rgb_image, track=None):
        """
        """
        if track is not None:
            x = track.bbox.xmin
            y = track.bbox.ymin
            w = track.bbox.width()
            h = track.bbox.height()
            crop_image = rgb_image[y:y + h, x:x + w]
        else:
            crop_image = rgb_image
        image_resized = cv2.resize(crop_image,
                                   (self.input_shape[0], self.input_shape[1]))
        x = image.img_to_array(image_resized)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)
        features = self.model.predict(x)
        return np.array(features).flatten()
def mobile_net(pred_cats,image_path,pickle_path,query_path):
    
    model = MobileNet(weights='imagenet', include_top=False)
    
    #Reading Image Names from Predicted Categories
    image_names=[]
    for i in range(0,len(pred_cats)) :
        # Give the path of the semi trained dataset
        path = image_path +"/"+ pred_cats[i]
        for img_path in os.listdir(path):
            if('.DS_Store' not in os.path.join(path,img_path)):
                image_names.append(pred_cats[i]+"/"+img_path)
                
    start = time.time()
    
    #print (image_names)
    
    # Give the MobileNet pickle file path
    for i in range(3):
        pickled_db_path = pickle_path + pred_cats[i] + ".pck"
        with open(pickled_db_path, 'rb') as fp:
                temp = pickle.load(fp)   
        fp.close()
        if i == 0:
            mnet_loaded = temp
        else:
            mnet_loaded = np.append(mnet_loaded,temp,axis = 0)
    print(mnet_loaded.shape)
    
    #Extract features of Query Image
    imgq = image.load_img(query_path, target_size=(224, 224))
    img_dataq = image.img_to_array(imgq)
    img_dataq = np.expand_dims(img_dataq, axis=0)
    img_dataq = preprocess_input(img_dataq)
    mnet_feature_query = model.predict(img_dataq)
    mnet_feature_np_query = np.array(mnet_feature_query)
    mnet_feature_np_query = mnet_feature_np_query.flatten()
    
    #Calculate Cosine Similarity
    similarity = []
    count = 0

    for i in mnet_loaded:
        count = count+1
        d = distance.cosine(i,mnet_feature_np_query)
        sim = 1-d
        similarity.append((sim,image_names[count-1]))
        
    # To display Image    
    def show_img(path):
        img =imread(path, mode="RGB")
        plt.imshow(img)
        plt.show()

    # Picking top 6 image similarities
    des_similarity = sorted(similarity,reverse=True)
    des_similarity = des_similarity[:6]
    print(des_similarity)
    # Give the Semi_images path 

    print ('Query image ==========================================')
    show_img(query_path)


    print ('Result images ========================================')
    for i in range(len(des_similarity)):
        print("similarity",des_similarity[i][0])
        result_image_path = image_path+ "/"+des_similarity[i][1]
        if(os.path.isfile(result_image_path)):
            show_img(result_image_path)

    end = time.time()
    
    total_time_main = end - start
    print("total_time_main", total_time_main)
Example #11
0
# capture frames from the camera
for frame in camera.capture_continuous(rawCapture,
                                       format="bgr",
                                       use_video_port=True):
    # grab the raw NumPy array representing the image, then initialize the timestamp
    # and occupied/unoccupied text
    image = frame.array

    # machine learning
    # resize to VGG16 size(224, 224)
    img = Image.fromarray(np.uint8(image))
    img = img.resize((224, 224))
    x = img
    pred_data = np.expand_dims(x, axis=0)
    preds = model.predict(preprocess_input(pred_data))
    results = decode_predictions(preds, top=1)[0]
    for result in results:
        # print(result)
        label = result[1]
        accu = str(result[2])
    #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # show the frame
    new_label = label + accu
    image = cv2.putText(image, new_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,
                        0.7, (0, 255, 0), 2)

    cv2.imshow("Frame", image)
    key = cv2.waitKey(1) & 0xFF
    # ピカ処理
Example #12
0
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

# In[11]:

print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

# In[12]:

from keras.applications.mobilenet import MobileNet
MobileNet_extractor = MobileNet(weights='imagenet', include_top=False)

# In[13]:

train_features = MobileNet_extractor.predict(x_train)
test_features = MobileNet_extractor.predict(x_test)

# In[14]:

print(train_features.shape, y_train.shape)
print(test_features.shape, y_test.shape)

# In[15]:

train_features = train_features.reshape(train_features.shape[0], -1)
test_features = test_features.reshape(test_features.shape[0], -1)

# In[16]:

print(train_features.shape, y_train.shape)
Example #13
0
"""

name = os.listdir('/content/drive/My Drive/Colab Notebooks/Large_data/Test')
test_images = []
for i in range(len(name)):
  img = cv2.imread('/content/drive/My Drive/Colab Notebooks/Large_data/Test/' + name[i],0)
  img = cv2.resize(img,(64,64))	
  test_images.append(img)
  #print('Test' + str(i))


test_images = np.array(test_images)
test_images = test_images/255.0
test_images = np.expand_dims(test_images,3)

final = model.predict(test_images)

print(final)

pred = []
for i in final:
  pred.append(np.argmax(i))
print(pred)

"""
    Plot metrics
"""

print(example.history.keys())
plt.plot(example.history['acc'])
plt.plot(example.history['val_acc'])
# In[ ]:

training_set_vgg16_features = []
for i in list(range(1, 401)) + list(range(501, 901)):
    img_path = 'test8/%06d.png' % i
    # print(img_path)
    img = image.load_img(img_path, target_size=(224, 224))  # 读取图片

    #plt.imshow(img)
    #plt.show()# 显示图片
    x = image.img_to_array(img)  # 图片转换为ndarray
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)  # 数组转换为vgg16输入格式

    training_set_vgg16_features.append(
        model_vgg16.predict(x).reshape((7 * 7 * 512, )))  # 计算该张图片的特征

# In[ ]:

training_set_vgg16_features_ndarray = np.vstack(
    training_set_vgg16_features)  # 转换为ndarray

# In[ ]:

training_set_label = np.array([1.0 if i < 400 else 0.0 for i in range(800)])

# # 读取测试集图片计算特征

# In[ ]:

test_set_vgg16_features = []
Example #15
0
# loop over the frames from the video stream
while True:
    # grab the frame from the threaded video stream and resize it
    # to have a maximum width of 400 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=400)

    # prepare the image to be classified by our deep learning network
    image = cv2.resize(frame, (224, 224))
    image = image.astype("float") / 255.0
    image = img_to_array(image)
    image = np.expand_dims(image, axis=0)

    # classify the input image and initialize the label and
    # probability of the prediction
    preds = model.predict(preprocess_input(image))
    results = decode_predictions(preds, top=1)[0]
    for result in results:
        # print(result)
        label = result[1]
        proba = str(result[2])

    # otherwise, reset the total number of consecutive frames and the
    # santa alarm

    # build the label and draw it on the frame
    label = "{0}: {1}%".format(label, proba * 100)
    frame = cv2.putText(frame, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
                        (0, 255, 0), 2)

    # show the output frame
openNames = []
files = os.listdir(test_file_dir)
for x in files:
    if os.path.isfile(test_file_dir + x):
        openNames.append(test_file_dir + str(x))

image = load_img(openNames[len(openNames) - 1], target_size=(224, 224))
print("loaded image #", len(openNames) - 1)
# convert the image pixels to a numpy array
image = img_to_array(image)
# reshape data for the model
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
# prepare the image for the VGG model
image = preprocess_input(image)
# predict the probability across all output classes
yhat = model.predict(image)
# convert the probabilities to class labels
labelPredict = decode_predictions(yhat)
# retrieve the most likely result, e.g. highest probability
label = labelPredict[0][0]
label2 = labelPredict[0][1]
label3 = labelPredict[0][2]
# print the classification
print('%s (%.2f%%)' % (label[1], label[2] * 100))
print('%s (%.2f%%)' % (label2[1], label2[2] * 100))
print('%s (%.2f%%)' % (label3[1], label3[2] * 100))
openFile = open("C://Users//mitch//Desktop//ImgText//guess.txt", 'w')
outString = str(label[1]) + "," + str(label[2])
print(outString)
print(outString, file=openFile)
openFile.close()
Example #17
0
    # Load our model
    # model = densenet169_model(img_rows=img_rows, img_cols=img_cols, color_type=channel, num_classes=num_classes)

    # load keras model
    model = MobileNet(weights=None, classes=10)
    sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(optimizer=sgd,
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    model.summary()

    # Start Fine-tuning
    model.fit(
        X_train,
        Y_train,
        batch_size=batch_size,
        epochs=nb_epoch,
        shuffle=True,
        verbose=1,
        validation_data=(X_valid, Y_valid),
    )

    # Make predictions
    predictions_valid = model.predict(X_valid,
                                      batch_size=batch_size,
                                      verbose=1)

    # Cross-entropy loss score
    score = log_loss(Y_valid, predictions_valid)