Example #1
0
    def nn_loss(self, reference, target, neighborhood_size=(3, 3)):
        v_pad = neighborhood_size[0] // 2
        h_pad = neighborhood_size[1] // 2
        val_pad = ktf.pad(reference,
                          [[0, 0], [v_pad, v_pad], [h_pad, h_pad], [0, 0]],
                          mode='CONSTANT',
                          constant_values=-10000)

        reference_tensors = []
        for i_begin in range(0, neighborhood_size[0]):
            i_end = i_begin - neighborhood_size[0] + 1
            i_end = None if i_end == 0 else i_end
            for j_begin in range(0, neighborhood_size[1]):
                j_end = j_begin - neighborhood_size[0] + 1
                j_end = None if j_end == 0 else j_end
                sub_tensor = val_pad[:, i_begin:i_end, j_begin:j_end, :]
                reference_tensors.append(ktf.expand_dims(sub_tensor, -1))
        reference = ktf.concat(reference_tensors, axis=-1)
        target = ktf.expand_dims(target, axis=-1)

        abs = ktf.abs(reference - target)
        norms = ktf.reduce_sum(abs, reduction_indices=[-2])
        loss = ktf.reduce_min(norms, reduction_indices=[-1])

        return loss
Example #2
0
def top_k(scores, I, ratio, top_k_var):
    """
    Returns indices to get the top K values in `scores` segment-wise, with
    segments defined by I. K is not fixed, but it is defined as a ratio of the
    number of elements in each segment.
    :param scores: a rank 1 tensor with scores;
    :param I: a rank 1 tensor with segment IDs;
    :param ratio: float, ratio of elements to keep for each segment;
    :param top_k_var: a tf.Variable without shape validation (e.g.,
    `tf.Variable(0.0, validate_shape=False)`);
    :return: a rank 1 tensor containing the indices to get the top K values of
    each segment in `scores`.
    """
    num_nodes = tf.segment_sum(tf.ones_like(I),
                               I)  # Number of nodes in each graph
    cumsum = tf.cumsum(num_nodes)  # Cumulative number of nodes (A, A+B, A+B+C)
    cumsum_start = cumsum - num_nodes  # Start index of each graph
    n_graphs = tf.shape(num_nodes)[0]  # Number of graphs in batch
    max_n_nodes = tf.reduce_max(num_nodes)  # Order of biggest graph in batch
    batch_n_nodes = tf.shape(I)[0]  # Number of overall nodes in batch
    to_keep = tf.ceil(ratio * tf.cast(num_nodes, tf.float32))
    to_keep = tf.cast(to_keep, tf.int32)  # Nodes to keep in each graph

    index = tf.range(batch_n_nodes)
    index = (index - tf.gather(cumsum_start, I)) + (I * max_n_nodes)

    y_min = tf.reduce_min(scores)
    dense_y = tf.ones((n_graphs * max_n_nodes, ))
    dense_y = dense_y * tf.cast(
        y_min - 1, tf.float32
    )  # subtract 1 to ensure that filler values do not get picked
    dense_y = tf.assign(
        top_k_var, dense_y, validate_shape=False
    )  # top_k_var is a variable with unknown shape defined in the elsewhere
    dense_y = tf.scatter_update(dense_y, index, scores)
    dense_y = tf.reshape(dense_y, (n_graphs, max_n_nodes))

    perm = tf.argsort(dense_y, direction='DESCENDING')
    perm = perm + cumsum_start[:, None]
    perm = tf.reshape(perm, (-1, ))

    to_rep = tf.tile(tf.constant([1., 0.]), (n_graphs, ))
    rep_times = tf.reshape(
        tf.concat((to_keep[:, None], (max_n_nodes - to_keep)[:, None]), -1),
        (-1, ))
    mask = tf_repeat_1d(to_rep, rep_times)

    perm = tf.boolean_mask(perm, mask)

    return perm