def __init__(self, input_dim, hidden_dim, init='glorot_uniform', activation='linear', weights=None): nvis = input_dim nhid = hidden_dim W_shape = nhid, nvis lim = np.sqrt(6. / (2 * nvis + 1)) W_init = np.random.uniform(-lim, lim, W_shape) W = theano.shared(W_init) hbias = theano.shared(np.zeros((nhid, 1)), broadcastable=[False, True]) self.init = initializations.get(init) self.activation = activations.get(activation) self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = input_dim self.input = T.matrix() #maybe need to replace the initialization function self.W = self.init((self.input_dim, self.hidden_dim)) self.b = shared_zeros((self.hidden_dim)) #self.b_tilde = shared_zeros((self.input_dim)) self.params = [self.W, self.b] if weights is not None: self.set_weights(weights)
def __init__(self, input_dim, hidden_dim, init='glorot_uniform', activation='linear', weights=None): nvis = input_dim nhid = hidden_dim W_shape = nhid,nvis lim=np.sqrt(6./(2*nvis+1)) W_init=np.random.uniform(-lim,lim,W_shape) W=theano.shared(W_init) hbias=theano.shared(np.zeros((nhid,1)),broadcastable=[False,True]) self.init = initializations.get(init) self.activation = activations.get(activation) self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = input_dim self.input = T.matrix() #maybe need to replace the initialization function self.W = self.init((self.input_dim, self.hidden_dim)) self.b = shared_zeros((self.hidden_dim)) #self.b_tilde = shared_zeros((self.input_dim)) self.params = [self.W, self.b] if weights is not None: self.set_weights(weights)
def __init__(self, activation='tanh', kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(MyLayer_one, self).__init__(**kwargs) self.activation = activations.get(activation) self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer
def __init__(self, units, activation='tanh', kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(binary_indicator_layer, self).__init__(**kwargs) self.activation = activations.get(activation) self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.units = units
def __init__(self, units, classes, activation='tanh', kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): super(target_representation_layer, self).__init__(**kwargs) self.activation = activations.get(activation) self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer self.units = units self.classes = classes
def __init__(self, input_dim, proj_dim=128, init='uniform', activation='sigmoid', weights=None): super(NodeContextProduct, self).__init__() self.input_dim = input_dim self.proj_dim = proj_dim self.init = initializations.get(init) self.activation = activations.get(activation) self.input = T.imatrix() # two different embeddings for pivot word and its context # because p(w|c) != p(c|w) self.W_w = self.init((input_dim, proj_dim)) self.W_c = self.init((input_dim, proj_dim)) self.params = [self.W_w, self.W_c] if weights is not None: self.set_weights(weights)
def __init__(self, activation0='tanh', activation1='softmax', kernel_initializer='glorot_uniform', bias_initializer='zeros', **kwargs): self.activation0 = activations.get(activation0) self.activation1 = activations.get(activation1) self.kernel_initializer = kernel_initializer self.bias_initializer = bias_initializer super(SelfAttentionScore, self).__init__(**kwargs)