Example #1
0
def recall(y_true, y_pred):
    '''Calculates the recall, a metric for multi-label classification of
    how many relevant items are selected.
    '''
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall = true_positives / (possible_positives + K.epsilon())
    return recall
Example #2
0
def precision(y_true, y_pred):
    '''Calculates the precision, a metric for multi-label classification of
    how many selected items are relevant.
    '''
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives + K.epsilon())
    return precision
Example #3
0
def fbeta_score(y_true, y_pred, beta=1):
    '''Calculates the F score, the weighted harmonic mean of precision and recall.
    This is useful for multi-label classification, where input samples can be
    classified as sets of labels. By only using accuracy (precision) a model
    would achieve a perfect score by simply assigning every class to every
    input. In order to avoid this, a metric should penalize incorrect class
    assignments as well (recall). The F-beta score (ranged from 0.0 to 1.0)
    computes this, as a weighted mean of the proportion of correct class
    assignments vs. the proportion of incorrect class assignments.
    With beta = 1, this is equivalent to a F-measure. With beta < 1, assigning
    correct classes becomes more important, and with beta > 1 the metric is
    instead weighted towards penalizing incorrect class assignments.
    '''
    if beta < 0:
        raise ValueError('The lowest choosable beta is zero (only precision).')

    # If there are no true positives, fix the F score at 0 like sklearn.
    if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
        return 0

    p = precision(y_true, y_pred)
    r = recall(y_true, y_pred)
    bb = beta**2
    fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
    return fbeta_score
Example #4
0
def kullback_leibler_divergence(y_true, y_pred):
    '''Calculates the Kullback-Leibler (KL) divergence between prediction
    and target values.
    '''
    y_true = K.clip(y_true, K.epsilon(), 1)
    y_pred = K.clip(y_pred, K.epsilon(), 1)
    return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
Example #5
0
def kde_entropy(output, var):
    dims = K.cast(K.shape(output)[1], K.floatx() ) #int(K.shape(output)[1])
    N    = K.cast(K.shape(output)[0], K.floatx() )
    
    normconst = (dims/2.0)*K.log(2*np.pi*var)
            
    # Kernel density estimation of entropy
    
    # get dists matrix
    x2 = K.expand_dims(K.sum(K.square(output), axis=1), 1)
    #x2 = x2 + K.transpose(x2)
    #return K.shape(x2)
    dists = x2 + K.transpose(x2) - 2*K.dot(output, K.transpose(output))
    dists = dists / (2*var)
    
    #y1 = K.expand_dims(output, 0)
    #y2 = K.expand_dims(output, 1)
    #dists = K.sum(K.square(y1-y2), axis=2) / (2*var)
    
    normCount = N

    ## Removes effect of diagonals, i.e. leave-one-out entropy
    #normCount = N-1
    #diagvals = get_diag(10e20*K.ones_like(dists[0,:]))
    #dists = dists + diagvals
    
    lprobs = logsumexp(-dists, axis=1) - K.log(normCount) - normconst
    
    h = -K.mean(lprobs)
    
    return nats2bits * h # , normconst + (dims/2.0)
Example #6
0
def matthews_correlation(y_true, y_pred):
    '''Calculates the Matthews correlation coefficient measure for quality
    of binary classification problems.
    '''
    y_pred_pos = K.round(K.clip(y_pred, 0, 1))
    y_pred_neg = 1 - y_pred_pos

    y_pos = K.round(K.clip(y_true, 0, 1))
    y_neg = 1 - y_pos

    tp = K.sum(y_pos * y_pred_pos)
    tn = K.sum(y_neg * y_pred_neg)

    fp = K.sum(y_neg * y_pred_pos)
    fn = K.sum(y_pos * y_pred_neg)

    numerator = (tp * tn - fp * fn)
    denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))

    return numerator / (denominator + K.epsilon())
Example #7
0
def model_lstm_with_self_att(embed_dp, max_len):
    hidden_states = embed_dp
    hidden_states = Bidirectional(
        LSTM(max_len, dropout=0.3, return_sequences=True,
             return_state=False))(hidden_states)

    # Attention mechanism
    attention = Conv1D(filters=max_len,
                       kernel_size=1,
                       activation='tanh',
                       padding='same',
                       use_bias=True,
                       kernel_initializer='glorot_uniform',
                       bias_initializer='zeros',
                       name="attention_layer1")(hidden_states)
    attention = Conv1D(filters=max_len,
                       kernel_size=1,
                       activation='linear',
                       padding='same',
                       use_bias=True,
                       kernel_initializer='glorot_uniform',
                       bias_initializer='zeros',
                       name="attention_layer2")(attention)
    attention = Lambda(lambda x: softmax(x, axis=1),
                       name="attention_vector")(attention)

    # Apply attention weights
    weighted_sequence_embedding = Dot(axes=[1, 1],
                                      normalize=False,
                                      name="weighted_sequence_embedding")(
                                          [attention, hidden_states])

    # Add and normalize to obtain final sequence embedding
    sequence_embedding = Lambda(lambda x: K.l2_normalize(K.sum(x, axis=1)))(
        weighted_sequence_embedding)

    return sequence_embedding
Example #8
0
def nll(y_true, y_pred):
    """ Negative log likelihood. """

    # keras.losses.binary_crossentropy give the mean
    # over the last axis. we require the sum
    return K.sum(K.binary_crossentropy(y_true, y_pred), axis=-1)
Example #9
0
def weighted_accuracy(y_true, y_pred):
    return K.sum(
        K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)) *
        K.sum(y_true, axis=-1)) / K.sum(y_true)
Example #10
0
def logsumexp(mx, axis):
    cmax = K.max(mx, axis=axis)
    cmax2 = K.expand_dims(cmax, 1)
    mx2 = mx - cmax2
    return cmax + K.log(K.sum(K.exp(mx2), axis=1))