Example #1
0
def MNet64(
        input_shape=None,
        depth_multiplier=1,  # DepthwiseConv2D param
        dropout=1e-3,
        input_tensor=None,
        classes=1000):

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor


# Type / Stride Filter Shape Input Size
# Conv / s2     3 × 3 × 3 × 32      224 × 224 × 3       3 × 3 × 1 × 32  64 x 64 x 1     S1!
# Conv dw / s1  3 × 3 × 32 dw       112 × 112 × 32                      64 x 64 x 32
# Conv / s1     1 × 1 × 32 × 64     112 × 112 × 32                      64 x 64 x 32
# Conv dw / s2  3 × 3 × 64 dw       112 × 112 × 64                      64 x 64 x 64    S1!
# Conv / s1     1 × 1 × 64 × 128    56 × 56 × 64                        64 x 64 x 64
# Conv dw / s1  3 × 3 × 128 dw      56 × 56 × 128                       64 x 64 x 128
# Conv / s1     1 × 1 × 128 × 128   56 × 56 × 128                       64 x 64 x 128
# Conv dw / s2  3 × 3 × 128 dw      56 × 56 × 128                       64 x 64 x 128
# Conv / s1     1 × 1 × 128 × 256   28 × 28 × 128                       32 x 32 x 128
# Conv dw / s1  3 × 3 × 256 dw      28 × 28 × 256                       32 x 32 x 256
# Conv / s1     1 × 1 × 256 × 256   28 × 28 × 256                       32 x 32 x 256
# Conv dw / s2  3 × 3 × 256 dw      28 × 28 × 256                       32 x 32 x 256
# Conv / s1     1 × 1 × 256 × 512   14 × 14 × 256                       16 x 16 x 256

# 5×
# Conv dw / s1  3 × 3 × 512 dw      14 × 14 × 512                       16 x 16 x 512
# Conv / s1     1 × 1 × 512 × 512   14 × 14 × 512                       16 x 16 x 512

# Conv dw / s2  3 × 3 × 512 dw      14 × 14 × 512                       16 x 16 x 512
# Conv / s1     1 × 1 × 512 × 1024  7 × 7 × 512                         8 x 8 x 512
# Conv dw / s2  3 × 3 × 1024 dw     7 × 7 × 1024                        8 x 8 x 1024
# Conv / s1     1 × 1 × 1024 × 1024 7 × 7 × 1024                        8 x 8 x 1024
# Avg Pool / s1 Pool 7 × 7          7 × 7 × 1024      8 × 8             8 x 8 x 1024
# FC / s1       1024 × 1000        1 × 1 × 1024                         1 × 1 × 1024
# Softmax / s1  1 × 1 × 1000                          1 x 1 x NKanji

    init = initializers.TruncatedNormal(stddev=0.09)

    x = _conv_block(img_input, 32, strides=(1, 1),
                    kernel_initializer=init)  # strides=(2, 2)
    x = _depthwise_conv_block(x,
                              64,
                              depth_multiplier,
                              block_id=1,
                              kernel_initializer=init)

    x = _depthwise_conv_block(x,
                              128,
                              depth_multiplier,
                              strides=(1, 1),
                              block_id=2,
                              kernel_initializer=init)  # strides=(2, 2)
    x = _depthwise_conv_block(x,
                              128,
                              depth_multiplier,
                              block_id=3,
                              kernel_initializer=init)

    x = _depthwise_conv_block(x,
                              256,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=4,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              256,
                              depth_multiplier,
                              block_id=5,
                              kernel_initializer=init)

    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=6,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              block_id=7,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              block_id=8,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              block_id=9,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              block_id=10,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              512,
                              depth_multiplier,
                              block_id=11,
                              kernel_initializer=init)

    x = _depthwise_conv_block(x,
                              1024,
                              depth_multiplier,
                              strides=(2, 2),
                              block_id=12,
                              kernel_initializer=init)
    x = _depthwise_conv_block(x,
                              1024,
                              depth_multiplier,
                              block_id=13,
                              kernel_initializer=init)

    if backend.image_data_format() == 'channels_first':
        shape = (1024, 1, 1)
    else:
        shape = (1, 1, 1024)

    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Reshape(shape, name='reshape_1')(x)
    x = layers.Dropout(dropout, name='dropout')(x)
    x = layers.Conv2D(classes, (1, 1),
                      padding='same',
                      kernel_initializer=init,
                      name='conv_preds')(x)
    x = layers.Activation('softmax', name='act_softmax')(x)
    x = layers.Reshape((classes, ), name='reshape_2')(x)

    model = models.Model(img_input, x, name='mobilenet')
    return model
Example #2
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.inputs = layers.Input(shape=shape)
        ac = layers.LeakyReLU(alpha=0.3)
        self.f_block = layers.Conv3D(4, (5, 5, 5),
                                     activation=ac,
                                     kernel_regularizer=regularizers.l2(
                                         self.re_rate),
                                     padding='same')(self.inputs)
        self.bn = layers.BatchNormalization()(self.f_block)
        self.mp1 = layers.MaxPooling3D((2, 2, 2))(self.bn)

        self.f_block1 = layers.Conv3D(8, (5, 5, 5),
                                      activation=ac,
                                      kernel_regularizer=regularizers.l2(
                                          self.re_rate),
                                      padding='same')(self.mp1)
        self.bn = layers.BatchNormalization()(self.f_block1)
        self.mp2 = layers.MaxPooling3D((2, 2, 2))(self.bn)

        self.f_block2 = layers.Conv3D(16, (4, 4, 4),
                                      activation=ac,
                                      kernel_regularizer=regularizers.l2(
                                          self.re_rate),
                                      padding='same')(self.mp2)

        self.f_block2 = layers.BatchNormalization()(self.f_block2)

        self.mp3 = layers.MaxPooling3D((2, 2, 2))(self.f_block2)

        self.f_block3 = layers.Conv3D(16, (3, 3, 3),
                                      activation=ac,
                                      kernel_regularizer=regularizers.l2(
                                          self.re_rate),
                                      padding='same')(self.mp3)
        self.f_block3 = layers.BatchNormalization()(self.f_block3)

        self.b_back3 = layers.Conv3D(16, (3, 3, 3),
                                     activation=ac,
                                     kernel_regularizer=regularizers.l2(
                                         self.re_rate),
                                     padding='same')(self.f_block3)
        self.b_back3 = layers.BatchNormalization()(self.b_back3)

        self.cat1 = layers.concatenate([self.f_block3, self.b_back3])
        self.bn4 = layers.BatchNormalization()(self.cat1)

        self.b_back2 = layers.Conv3D(
            16, (3, 3, 3),
            activation=ac,
            kernel_regularizer=regularizers.l2(self.re_rate),
            padding='same')(layers.UpSampling3D((2, 2, 2))(self.bn4))
        self.b_back2 = layers.BatchNormalization()(self.b_back2)
        self.cat2 = layers.concatenate([self.mp2, self.b_back2])

        self.b_back1 = layers.Conv3D(
            16, (3, 3, 3),
            activation=ac,
            kernel_regularizer=regularizers.l2(self.re_rate),
            padding='same')(layers.UpSampling3D((2, 2, 2))(self.cat2))
        self.b_back1 = layers.BatchNormalization()(self.b_back1)

        self.cat3 = layers.concatenate([self.mp1, self.b_back1])

        self.gb = layers.GlobalAveragePooling3D()(self.cat3)
        # self.gb = layers.GlobalMaxPooling3D()(self.cat3)
        self.dense1 = layers.Dropout(rate=0.3)(self.gb)
        self.dense3 = layers.Dense(1, activation='sigmoid')(self.dense1)

        self.model = keras.Model(input=self.inputs, output=self.dense3)
#Building model with best parameters
model = models.Sequential()

model.add(
    layers.Conv2D(32, (5, 5), activation='relu', input_shape=(299, 299, 3)))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (5, 5), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.AveragePooling2D((2, 2)))

model.add(layers.Flatten())
model.add(layers.Dense(9, activation=a))
model.add(layers.Dropout(rate=c))
model.add(layers.Dense(9, activation='softmax'))

#Compiling
model.compile(loss='categorical_crossentropy',
              optimizer=e,
              metrics=['accuracy'])

#Fitting
hist = model.fit(images_train,
                 labels_train,
                 batch_size=b,
                 epochs=d,
                 validation_split=0.3)

#Loss & Accuracy
Example #4
0
def trainModel():
        base_model = VGG16(weights=WEIGHTS, include_top=INCLUDE_TOP, input_shape=(HEIGHT, WIDTH, 3))
        # Freeze the layers except the last 4 layers
        for layer in base_model.layers[:-4]:
                layer.trainable = False
                
        # Check the trainable status of the individual layers
        for layer in base_model.layers:
                print(layer, layer.trainable)
    
        # Create the model
        model = models.Sequential()
        # Add the vgg convolutional base model
        model.add(base_model)
        # Add new layers
        model.add(layers.Flatten())
        model.add(layers.Dense(1024, activation='relu'))
        model.add(layers.Dropout(0.5))
        model.add(layers.Dense(3, activation='softmax'))
        # Show a summary of the model. Check the number of trainable parameters
        model.summary()
        train_datagen = ImageDataGenerator(
                rescale=1./255,
                rotation_range=20,
                width_shift_range=0.2,
                height_shift_range=0.2,
                horizontal_flip=True,
                fill_mode='nearest'
                )
        validation_datagen = ImageDataGenerator(rescale=1./255)
        train_generator = train_datagen.flow_from_directory(
        TRAIN_DIR,
        target_size=(HEIGHT, WIDTH),
        batch_size=BATCH_SIZE,
        class_mode='categorical')
                        
        validation_generator = validation_datagen.flow_from_directory(
                VAL_DIR,
                target_size=(HEIGHT, WIDTH),
                batch_size=BATCH_SIZE,
                class_mode='categorical',
                shuffle=False)


        #adam = Adam(lr=0.00001)


        # Compile the model
        model.compile(loss='categorical_crossentropy',
                optimizer=RMSprop(lr=1e-4),
                metrics=['acc'])
        #model.compile(loss='categorical_crossentropy',
        #        optimizer=adam,
        #        metrics=['acc'])




        filepath="./checkpoints/" + "VGG16" + "_model_weights.h5"
        checkpoint = ModelCheckpoint(filepath, monitor=["acc"], verbose=1, mode='max')
        callbacks_list = [checkpoint]
        # Train the model
        history = model.fit_generator(
        train_generator,
        steps_per_epoch=num_train_images // BATCH_SIZE ,
        epochs=args.num_epochs,
        validation_data=validation_generator,
        validation_steps=num_val_images // BATCH_SIZE,
        verbose=1, callbacks=callbacks_list)

        acc = history.history['acc']
        val_acc = history.history['val_acc']
        loss = history.history['loss']
        val_loss = history.history['val_loss']
 
        epochs = range(len(acc))
 
        plt.plot(epochs, acc, 'b', label='Training acc')
        plt.plot(epochs, val_acc, 'r', label='Validation acc')
        plt.title('Training and validation accuracy')
        plt.legend()
 
        plt.figure()
 
        plt.plot(epochs, loss, 'b', label='Training loss')
        plt.plot(epochs, val_loss, 'r', label='Validation loss')
        plt.title('Training and validation loss')
        plt.legend()
        plt.show()
Example #5
0
imageCopy(origin_dir, train_dogs_dir, name='dog', range_num=(0, 1000))
imageCopy(origin_dir, validation_dogs_dir, name='dog', range_num=(1000, 1500))
imageCopy(origin_dir, test_dogs_dir, name='dog', range_num=(1500, 2000))

## keras model building ##
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout((0.5)))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()

model.compile(optimizers.adam(lr=0.0001), loss='binary_crossentropy', metrics=['acc'])

## preprocessing ##
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255) # pixel (0, 255) --> (0, 1)

# rescale / class num #
train_generator = train_datagen.flow_from_directory(train_dir,
                                                    target_size=(150, 150),
                                                    batch_size=20,
                                                    class_mode='binary')
Example #6
0
def design_dnn(nb_features,
               input_shape,
               nb_levels,
               conv_size,
               nb_labels,
               feat_mult=1,
               pool_size=2,
               padding='same',
               activation='elu',
               final_layer='dense-sigmoid',
               conv_dropout=0,
               conv_maxnorm=0,
               nb_input_features=1,
               batch_norm=False,
               name=None,
               prefix=None,
               use_strided_convolution_maxpool=True,
               nb_conv_per_level=2):
    """
    "deep" cnn with dense or global max pooling layer @ end...

    Could use sequential...
    """

    model_name = name
    if model_name is None:
        model_name = 'model_1'
    if prefix is None:
        prefix = model_name

    ndims = len(input_shape)
    input_shape = tuple(input_shape)

    convL = getattr(KL, 'Conv%dD' % ndims)
    maxpool = KL.MaxPooling3D if len(input_shape) == 3 else KL.MaxPooling2D
    if isinstance(pool_size, int):
        pool_size = (pool_size, ) * ndims

    # kwargs for the convolution layer
    conv_kwargs = {'padding': padding, 'activation': activation}
    if conv_maxnorm > 0:
        conv_kwargs['kernel_constraint'] = maxnorm(conv_maxnorm)

    # initialize a dictionary
    enc_tensors = {}

    # first layer: input
    name = '%s_input' % prefix
    enc_tensors[name] = KL.Input(shape=input_shape + (nb_input_features, ),
                                 name=name)
    last_tensor = enc_tensors[name]

    # down arm:
    # add nb_levels of conv + ReLu + conv + ReLu. Pool after each of first nb_levels - 1 layers
    for level in range(nb_levels):
        for conv in range(nb_conv_per_level):
            if conv_dropout > 0:
                name = '%s_dropout_%d_%d' % (prefix, level, conv)
                enc_tensors[name] = KL.Dropout(conv_dropout)(last_tensor)
                last_tensor = enc_tensors[name]

            name = '%s_conv_%d_%d' % (prefix, level, conv)
            nb_lvl_feats = np.round(nb_features * feat_mult**level).astype(int)
            enc_tensors[name] = convL(nb_lvl_feats,
                                      conv_size,
                                      **conv_kwargs,
                                      name=name)(last_tensor)
            last_tensor = enc_tensors[name]

        # max pool
        if use_strided_convolution_maxpool:
            name = '%s_strided_conv_%d' % (prefix, level)
            enc_tensors[name] = convL(nb_lvl_feats,
                                      pool_size,
                                      **conv_kwargs,
                                      name=name)(last_tensor)
            last_tensor = enc_tensors[name]
        else:
            name = '%s_maxpool_%d' % (prefix, level)
            enc_tensors[name] = maxpool(pool_size=pool_size,
                                        name=name,
                                        padding=padding)(last_tensor)
            last_tensor = enc_tensors[name]

    # dense layer
    if final_layer == 'dense-sigmoid':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(1, name=name,
                                     activation="sigmoid")(last_tensor)

    elif final_layer == 'dense-tanh':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(1, name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # Omittting BatchNorm for now, it seems to have a cpu vs gpu problem
        # https://github.com/tensorflow/tensorflow/pull/8906
        # https://github.com/fchollet/keras/issues/5802
        # name = '%s_%s_bn' % prefix
        # enc_tensors[name] = KL.BatchNormalization(axis=batch_norm, name=name)(last_tensor)
        # last_tensor = enc_tensors[name]

        name = '%s_%s_tanh' % prefix
        enc_tensors[name] = KL.Activation(activation="tanh",
                                          name=name)(last_tensor)

    elif final_layer == 'dense-softmax':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(nb_labels,
                                     name=name,
                                     activation="softmax")(last_tensor)

    # global max pooling layer
    elif final_layer == 'myglobalmaxpooling':

        name = '%s_batch_norm' % prefix
        enc_tensors[name] = KL.BatchNormalization(axis=batch_norm,
                                                  name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool' % prefix
        enc_tensors[name] = KL.Lambda(_global_max_nd, name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool_reshape' % prefix
        enc_tensors[name] = KL.Reshape((1, 1), name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # cannot do activation in lambda layer. Could code inside, but will do extra lyaer
        name = '%s_global_max_pool_sigmoid' % prefix
        enc_tensors[name] = KL.Conv1D(1,
                                      1,
                                      name=name,
                                      activation="sigmoid",
                                      use_bias=True)(last_tensor)

    elif final_layer == 'globalmaxpooling':

        name = '%s_conv_to_featmaps' % prefix
        enc_tensors[name] = KL.Conv3D(2, 1, name=name,
                                      activation="relu")(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool' % prefix
        enc_tensors[name] = KL.GlobalMaxPooling3D(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # cannot do activation in lambda layer. Could code inside, but will do extra lyaer
        name = '%s_global_max_pool_softmax' % prefix
        enc_tensors[name] = KL.Activation('softmax', name=name)(last_tensor)

    last_tensor = enc_tensors[name]

    # create the model
    model = Model(inputs=[enc_tensors['%s_input' % prefix]],
                  outputs=[last_tensor],
                  name=model_name)
    return model
    fully_connected_size = int(input("Fully connected layer size: "))
    epochs_phase_1 = int(input("Phase 1 epochs: "))
    epochs_phase_2 = int(input("Phase 2 epochs: "))
    batch_size = int(input("Batch size: "))
    dropout_rate = float(input("Dropout rate: "))

    # Clear previous layer session to match continiously constructed layer names in weights file
    K.clear_session()

    # Construct the classifier NN(input -> encoder -> Flatten -> FC -> output with 10 classes(0 - 9))
    encoded = encoder(input_img, convolutional_layers,
                      convolutional_filter_size,
                      convolutional_filters_per_layer, dropout_rate)
    flatten = layers.Flatten()(encoded)
    fc = layers.Dense(fully_connected_size, activation='relu')(flatten)
    dropout = layers.Dropout(rate=dropout_rate)(fc)
    output_layer = layers.Dense(training_labels.num_classes(),
                                activation='softmax')(dropout)

    classifier = Model(input_img, output_layer)
    classifier.compile(loss='categorical_crossentropy',
                       optimizer=optimizers.Adam())

    # Print it's summary
    classifier.summary()

    # Load encoder weights
    classifier.load_weights(autoencoder_weights_file, by_name=True)

    # Train phase 1: Only fully connected layer weights
Example #8
0
def VGGNet():
    image_input = Input(shape=(256, 256, 3), name='image_input')
    # x = CoordinateChannel2D()(inp)
    x = kl.Conv2D(filters=64,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block1_conv1')(image_input)
    x = kl.Conv2D(filters=64,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block1_conv2')(x)
    x = kl.Conv2D(filters=64,
                  kernel_size=2,
                  strides=2,
                  activation='relu',
                  padding='same',
                  name='block1_reduction_conv')(x)
    x = kl.BatchNormalization()(x)
    x = kl.Dropout(0.5)(x)

    x = kl.Conv2D(filters=128,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block2_conv1')(x)
    x = kl.Conv2D(filters=128,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block2_conv2')(x)
    x = kl.Conv2D(filters=128,
                  kernel_size=2,
                  strides=2,
                  activation='relu',
                  padding='same',
                  name='block2_reduction_conv')(x)
    x = kl.BatchNormalization()(x)
    x = kl.Dropout(0.5)(x)

    x = kl.Conv2D(filters=256,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block3_conv1')(x)
    x = kl.Conv2D(filters=256,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block3_conv2')(x)
    x = kl.Conv2D(filters=256,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block3_conv3')(x)
    x = kl.Conv2D(filters=256,
                  kernel_size=2,
                  strides=2,
                  activation='relu',
                  padding='same',
                  name='block3_reduction_conv')(x)
    x = kl.BatchNormalization()(x)
    x = kl.Dropout(0.5)(x)

    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block4_conv1')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block4_conv2')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block4_conv3')(x)
    # x = CoordinateChannel2D(use_radius=True)(x)
    #     x, samap, g = SelfAttention(ch=512, name='self_attention')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=2,
                  strides=2,
                  activation='relu',
                  padding='same',
                  name='block4_reduction_conv')(x)
    x = kl.BatchNormalization()(x)
    x = kl.Dropout(0.5)(x)

    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block5_conv1')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block5_conv2')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=(3, 3),
                  activation='relu',
                  padding='same',
                  name='block5_conv3')(x)
    #     x, amaps = SoftAttention(ch=512, m=32, name='soft_attention')(x)
    x = kl.Conv2D(filters=512,
                  kernel_size=2,
                  strides=2,
                  activation='relu',
                  padding='same',
                  name='block5_reduction_conv')(x)
    return Model(image_input, x, name='imgModel')
Example #9
0
def DenseNet():
    qw = Input(shape=(256, 256, 3), name='image_input')
    qw_1 = kl.Conv2D(strides=1,
                     padding='valid',
                     activation='relu',
                     filters=64,
                     name='conv',
                     kernel_size=3)(qw)

    qw_1 = densenet.densenet.conv_block(
        x=qw_1,
        growth_rate=64,
        name='conv_1',
    )

    qw_2 = densenet.densenet.dense_block(qw_1, blocks=1, name='block_1')
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)
    qw_2 = kl.Conv2D(filters=64,
                     kernel_size=2,
                     strides=2,
                     activation='relu',
                     padding='same',
                     name='block1_reduction_conv')(qw_2)
    qw_2 = kl.Dropout(0.5)(qw_2)

    qw_2 = densenet.densenet.dense_block(qw_2, blocks=1, name='block_2')
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)
    # qw_2 = kl.MaxPool2D(pool_size=2)(qw_2)
    qw_2 = kl.Conv2D(filters=128,
                     kernel_size=2,
                     strides=2,
                     activation='relu',
                     padding='same',
                     name='block2_reduction_conv')(qw_2)
    qw_2 = kl.Dropout(0.5)(qw_2)

    qw_2 = densenet.densenet.dense_block(qw_2, blocks=1, name='block_3')
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)
    # qw_2 = kl.MaxPool2D(pool_size=2)(qw_2)
    qw_2 = kl.Conv2D(filters=256,
                     kernel_size=2,
                     strides=2,
                     activation='relu',
                     padding='same',
                     name='block3_reduction_conv')(qw_2)
    qw_2 = kl.Dropout(0.5)(qw_2)

    qw_2 = densenet.densenet.dense_block(qw_2, blocks=1, name='block_4')
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)
    # qw_2 = kl.MaxPool2D(pool_size=2)(qw_2)
    qw_2 = kl.Conv2D(filters=512,
                     kernel_size=2,
                     strides=2,
                     activation='relu',
                     padding='same',
                     name='block4_reduction_conv')(qw_2)
    qw_2 = kl.Dropout(0.5)(qw_2)

    qw_2 = densenet.densenet.dense_block(qw_2, blocks=1, name='block_5')
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)
    # qw_2 = kl.MaxPool2D(pool_size=2)(qw_2)
    qw_2 = kl.Conv2D(filters=1024,
                     kernel_size=2,
                     strides=2,
                     activation='relu',
                     padding='same',
                     name='block5_reduction_conv')(qw_2)
    # qw_2 = kl.Dropout(0.5)(qw_2)
    qw_2 = kl.BatchNormalization()(qw_2)
    qw_2 = kl.Activation('relu')(qw_2)

    return Model(qw, qw_2, name='imgModel')
Example #10
0
def get_model(outputs, gpus=1):
    model = None
    if os.path.isfile(WEIGHTS_FILE) and False:
        model = models.load_model(WEIGHTS_FILE)
        print('model loaded')
    else:
        inp = layers.Input(shape=(
            8,
            8,
            12,
        ))
        flat_inp = layers.Flatten()(inp)
        y = inp
        y = residual_block(y, 128, _project_shortcut=True)
        for i in range(25):
            y = residual_block(y, 128, _project_shortcut=False)
        y = layers.Flatten()(y)

        inp2 = layers.Input(shape=(4, ))
        y = layers.concatenate([y, flat_inp, inp2])
        y = layers.Dense(1024,
                         activation='relu',
                         kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y)
        y = layers.Dropout(0.1)(y)

        y_policy = layers.Dropout(0.2)(y)
        y_policy = layers.Dense(
            1024,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_policy)
        y_policy = layers.Dropout(0.1)(y_policy)
        y_policy = layers.Dense(
            2048,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_policy)
        y_policy = layers.Dropout(0.1)(y_policy)
        y_policy = layers.Dense(
            outputs,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_policy)
        y_policy = layers.Activation("softmax")(y_policy)

        y_value = layers.Dropout(0.2)(y)
        y_value = layers.Dense(
            1024,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_value)
        y_value = layers.Dropout(0.1)(y_value)
        y_value = layers.Dense(
            2048,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_value)
        y_value = layers.Dropout(0.1)(y_value)
        y_value = layers.Dense(
            2,
            activation='relu',
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY))(y_value)
        y_value = layers.Activation("softmax")(y_value)

        model = models.Model(inputs=[inp, inp2], outputs=[y_policy, y_value])
        # model.summary()
        model.compile(optimizer=optimizers.SGD(lr=0.001, momentum=0.6),
                      loss='categorical_crossentropy',
                      loss_weights=[1., 1.],
                      metrics=['accuracy'])

        if os.path.isfile(WEIGHTS_FILE):
            model.load_weights(WEIGHTS_FILE)

    return model, model
Example #11
0
textNet = textNet()
textNet.summary()

# In[301]:

SVG(
    model_to_dot(textNet, show_layer_names=True,
                 show_shapes=True).create(prog='dot', format='svg'))

# # Define Complete Joint Network

# In[302]:

image_input = Input(shape=(256, 256, 3), name='image_input')
image_features = imgNet(image_input)
image_features = kl.Dropout(0.1)(image_features)
image_features = kl.Flatten()(image_features)
image_features = kl.Dense(512, activation='relu')(image_features)

words_input = kl.Input(shape=(max_wlen, ), name='words_input')
text_features = textNet(words_input)
text_features = kl.Dropout(0.1)(text_features)
text_features = kl.Dense(512, activation='relu')(text_features)

g = kl.Concatenate()([image_features, text_features])
g = kl.Dense(512, activation='relu')(g)
target = Dense(vocab_size + 1, activation='softmax', name='target_word')(g)
model = Model([image_input, words_input], target)

# In[303]:
def VGG16():

    # Determine proper input shape
    input_shape = (128, 128, 200)
    img_input = layers.Input(shape=input_shape)

    # Block 1
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv1')(img_input)
    x = layers.Conv2D(64, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block1_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv1')(x)
    x = layers.Conv2D(128, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block2_conv2')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv1')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv2')(x)
    x = layers.Conv2D(256, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block3_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block4_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv1')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv2')(x)
    x = layers.Conv2D(512, (3, 3),
                      activation='relu',
                      padding='same',
                      name='block5_conv3')(x)
    x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    # Classification block
    x = layers.Flatten(name='flatten')(x)
    x = layers.Dropout(0.3)(x)
    x = layers.Dense(4096, activation='relu', name='fc1')(x)
    x = layers.Dropout(0.3)(x)
    x = layers.Dense(4096, activation='relu', name='fc2')(x)
    #x = layers.Dense(2, name='predictions')(x)

    inputs = img_input
    # Create model.
    #model = models.Model(inputs, x, name='vgg16')

    y1 = layers.Dense(11, activation='softmax')(x)
    y2 = layers.Dense(11, activation='softmax')(x)

    model = Model(inputs=inputs, outputs=[y1, y2])

    model.load_weights("weight/model_2_v1_tf.hdf5")

    adam = Adam(lr=0.0001)
    model.compile(loss='categorical_crossentropy',
                  optimizer=adam,
                  metrics=['accuracy'])
    return model
    trains_l = trainig_data_labels[0:trains_nums]
    print(trains_d.shape)
    print(trains_l.shape)

    val_d = trainig_data[trains_nums:val_nums + trains_nums]
    val_l = trainig_data_labels[trains_nums:val_nums + trains_nums]

    # graph
    input_tensor = Input(shape=(13, ))
    x = layers.Dense(
        64, activation='relu',
        kernel_regularizer=keras.regularizers.l2(0.001))(input_tensor)
    x = layers.Dense(128,
                     activation='relu',
                     kernel_regularizer=keras.regularizers.l2(0.001))(x)
    x = layers.Dropout(0.5)(x)
    x = layers.Dense(64,
                     activation='relu',
                     kernel_regularizer=keras.regularizers.l2(0.001))(x)
    output_tensor = layers.Dense(14, activation='softmax')(x)

    model = Model(input_tensor, output_tensor)
    model.summary()

    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    callback = [
        keras.callbacks.TensorBoard(
            log_dir="log_dir",
Example #14
0
from keras import layers, models

from loader import prepare_uic_data

X, Y = prepare_uic_data()
X = X.reshape(*X.shape, 1)

model = models.Sequential()
model.add(layers.Conv2D(32, (5, 5), activation='relu',
                        input_shape=X.shape[1:]))
model.add(layers.MaxPooling2D())
model.add(layers.Conv2D(32, (5, 5), activation='relu'))
model.add(layers.MaxPooling2D())
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dropout(.2))
model.add(layers.Dense(2, activation='softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='sgd',
              metrics=['accuracy'])
model.fit(X, Y, validation_split=.2, epochs=10)
model.save('uic_cnn.h5')
Example #15
0
def conv_enc(nb_features,
             input_shape,
             nb_levels,
             conv_size,
             name=None,
             prefix=None,
             feat_mult=1,
             pool_size=2,
             dilation_rate_mult=1,
             padding='same',
             activation='elu',
             layer_nb_feats=None,
             use_residuals=False,
             nb_conv_per_level=2,
             conv_dropout=0,
             batch_norm=None):
    """
    Fully Convolutional Encoder
    """

    # naming
    model_name = name
    if prefix is None:
        prefix = model_name

    # volume size data
    ndims = len(input_shape) - 1
    input_shape = tuple(input_shape)
    if isinstance(pool_size, int):
        pool_size = (pool_size, ) * ndims

    # prepare layers
    convL = getattr(KL, 'Conv%dD' % ndims)
    conv_kwargs = {'padding': padding, 'activation': activation}
    maxpool = getattr(KL, 'MaxPooling%dD' % ndims)

    # first layer: input
    name = '%s_input' % prefix
    last_tensor = KL.Input(shape=input_shape, name=name)
    input_tensor = last_tensor

    # down arm:
    # add nb_levels of conv + ReLu + conv + ReLu. Pool after each of first nb_levels - 1 layers
    lfidx = 0
    for level in range(nb_levels):
        lvl_first_tensor = last_tensor
        nb_lvl_feats = np.round(nb_features * feat_mult**level).astype(int)
        conv_kwargs['dilation_rate'] = dilation_rate_mult**level

        for conv in range(nb_conv_per_level):
            if layer_nb_feats is not None:
                nb_lvl_feats = layer_nb_feats[lfidx]
                lfidx += 1

            name = '%s_conv_downarm_%d_%d' % (prefix, level, conv)
            if conv < (nb_conv_per_level - 1) or (not use_residuals):
                last_tensor = convL(nb_lvl_feats,
                                    conv_size,
                                    **conv_kwargs,
                                    name=name)(last_tensor)
            else:  # no activation
                last_tensor = convL(nb_lvl_feats,
                                    conv_size,
                                    padding=padding,
                                    name=name)(last_tensor)

            if conv_dropout > 0:
                # conv dropout along feature space only
                name = '%s_dropout_downarm_%d_%d' % (prefix, level, conv)
                noise_shape = [None, *[1] * ndims, nb_lvl_feats]
                last_tensor = KL.Dropout(conv_dropout,
                                         noise_shape=noise_shape)(last_tensor)

        if use_residuals:
            convarm_layer = last_tensor

            # the "add" layer is the original input
            # However, it may not have the right number of features to be added
            nb_feats_in = lvl_first_tensor.get_shape()[-1]
            nb_feats_out = convarm_layer.get_shape()[-1]
            add_layer = lvl_first_tensor
            if nb_feats_in > 1 and nb_feats_out > 1 and (nb_feats_in !=
                                                         nb_feats_out):
                name = '%s_expand_down_merge_%d' % (prefix, level)
                last_tensor = convL(nb_lvl_feats,
                                    conv_size,
                                    **conv_kwargs,
                                    name=name)(lvl_first_tensor)
                add_layer = last_tensor

                if conv_dropout > 0:
                    name = '%s_dropout_down_merge_%d_%d' % (prefix, level,
                                                            conv)
                    noise_shape = [None, *[1] * ndims, nb_lvl_feats]
                    last_tensor = KL.Dropout(
                        conv_dropout, noise_shape=noise_shape)(last_tensor)

            name = '%s_res_down_merge_%d' % (prefix, level)
            last_tensor = KL.add([add_layer, convarm_layer], name=name)

            name = '%s_res_down_merge_act_%d' % (prefix, level)
            last_tensor = KL.Activation(activation, name=name)(last_tensor)

        if batch_norm is not None:
            name = '%s_bn_down_%d' % (prefix, level)
            last_tensor = KL.BatchNormalization(axis=batch_norm,
                                                name=name)(last_tensor)

        # max pool if we're not at the last level
        if level < (nb_levels - 1):
            name = '%s_maxpool_%d' % (prefix, level)
            last_tensor = maxpool(pool_size=pool_size,
                                  name=name,
                                  padding=padding)(last_tensor)

    # create the model and return
    model = Model(inputs=input_tensor, outputs=[last_tensor], name=model_name)
    return model
Example #16
0
# add START and END to lines
lines = [['START'] + l + ['END'] for l in lines]

# force all lines to be same length
maxlen = 0
for l in lines:
    if len(l) > maxlen:
        maxlen = len(l)
for i in range(len(lines)):
    if len(lines[i]) < maxlen:
        lines[i] += ['BLANK'] * (maxlen - len(lines[i]))

# condense list of paragraphs into an np tensor
# dimensions: examples/sentences, character vectors, characters 1/0s
data = np.zeros((len(lines), maxlen, num_chars))
for i, line in enumerate(lines):
    for j, c in enumerate(line):
        data[i][j][char_to_ind[c]] = 1

# split data into inputs and outputs
seq_len = 100
X = np.zeros((0, seq_len, num_chars))

# create LSTM model
lstm_input = kl.Input(shape=[maxlen, num_chars])
H = kl.LSTM(256)(lstm_input)
H = kl.Dropout(0.2)(H)
lstm_output = kl.Dense(num_chars, activation='softmax')(H)
lstm = km.Model(lstm_input, lstm_output)
lstm.compile(loss="categorical_crossentropy", optimizer="adam")
Example #17
0
def conv_dec(nb_features,
             input_shape,
             nb_levels,
             conv_size,
             nb_labels,
             name=None,
             prefix=None,
             feat_mult=1,
             pool_size=2,
             use_skip_connections=False,
             padding='same',
             dilation_rate_mult=1,
             activation='elu',
             use_residuals=False,
             final_pred_activation='softmax',
             nb_conv_per_level=2,
             layer_nb_feats=None,
             batch_norm=None,
             conv_dropout=0,
             input_model=None):
    """
    Fully Convolutional Decoder

    Parameters:
        ...
        use_skip_connections (bool): if true, turns an Enc-Dec to a U-Net.
            If true, input_tensor and tensors are required.
            It assumes a particular naming of layers. conv_enc...
    """

    # naming
    model_name = name
    if prefix is None:
        prefix = model_name

    # if using skip connections, make sure need to use them.
    if use_skip_connections:
        assert input_model is not None, "is using skip connections, tensors dictionary is required"

    # first layer: input
    input_name = '%s_input' % prefix
    if input_model is None:
        input_tensor = KL.Input(shape=input_shape, name=input_name)
        last_tensor = input_tensor
    else:
        input_tensor = input_model.input
        last_tensor = input_model.output
        input_shape = last_tensor.shape.as_list()[1:]

    # vol size info
    ndims = len(input_shape) - 1
    input_shape = tuple(input_shape)
    if isinstance(pool_size, int):
        if ndims > 1:
            pool_size = (pool_size, ) * ndims

    # prepare layers
    convL = getattr(KL, 'Conv%dD' % ndims)
    conv_kwargs = {'padding': padding, 'activation': activation}
    upsample = getattr(KL, 'UpSampling%dD' % ndims)

    # up arm:
    # nb_levels - 1 layers of Deconvolution3D
    #    (approx via up + conv + ReLu) + merge + conv + ReLu + conv + ReLu
    lfidx = 0
    for level in range(nb_levels - 1):
        nb_lvl_feats = np.round(nb_features *
                                feat_mult**(nb_levels - 2 - level)).astype(int)
        conv_kwargs['dilation_rate'] = dilation_rate_mult**(nb_levels - 2 -
                                                            level)

        # upsample matching the max pooling layers size
        name = '%s_up_%d' % (prefix, nb_levels + level)
        last_tensor = upsample(size=pool_size, name=name)(last_tensor)
        up_tensor = last_tensor

        # merge layers combining previous layer
        # TODO: add Cropping3D or Cropping2D if 'valid' padding
        if use_skip_connections:
            conv_name = '%s_conv_downarm_%d_%d' % (
                prefix, nb_levels - 2 - level, nb_conv_per_level - 1)
            cat_tensor = input_model.get_layer(conv_name).output
            name = '%s_merge_%d' % (prefix, nb_levels + level)
            last_tensor = KL.concatenate([cat_tensor, last_tensor],
                                         axis=ndims + 1,
                                         name=name)

        # convolution layers
        for conv in range(nb_conv_per_level):
            if layer_nb_feats is not None:
                nb_lvl_feats = layer_nb_feats[lfidx]
                lfidx += 1

            name = '%s_conv_uparm_%d_%d' % (prefix, nb_levels + level, conv)
            if conv < (nb_conv_per_level - 1) or (not use_residuals):
                last_tensor = convL(nb_lvl_feats,
                                    conv_size,
                                    **conv_kwargs,
                                    name=name)(last_tensor)
            else:
                last_tensor = convL(nb_lvl_feats,
                                    conv_size,
                                    padding=padding,
                                    name=name)(last_tensor)

            if conv_dropout > 0:
                name = '%s_dropout_uparm_%d_%d' % (prefix, level, conv)
                noise_shape = [None, *[1] * ndims, nb_lvl_feats]
                last_tensor = KL.Dropout(conv_dropout,
                                         noise_shape=noise_shape)(last_tensor)

        # residual block
        if use_residuals:

            # the "add" layer is the original input
            # However, it may not have the right number of features to be added
            add_layer = up_tensor
            nb_feats_in = add_layer.get_shape()[-1]
            nb_feats_out = last_tensor.get_shape()[-1]
            if nb_feats_in > 1 and nb_feats_out > 1 and (nb_feats_in !=
                                                         nb_feats_out):
                name = '%s_expand_up_merge_%d' % (prefix, level)
                add_layer = convL(nb_lvl_feats,
                                  conv_size,
                                  **conv_kwargs,
                                  name=name)(add_layer)

                if conv_dropout > 0:
                    name = '%s_dropout_up_merge_%d_%d' % (prefix, level, conv)
                    noise_shape = [None, *[1] * ndims, nb_lvl_feats]
                    last_tensor = KL.Dropout(
                        conv_dropout, noise_shape=noise_shape)(last_tensor)

            name = '%s_res_up_merge_%d' % (prefix, level)
            last_tensor = KL.add([last_tensor, add_layer], name=name)

            name = '%s_res_up_merge_act_%d' % (prefix, level)
            last_tensor = KL.Activation(activation, name=name)(last_tensor)

        if batch_norm is not None:
            name = '%s_bn_up_%d' % (prefix, level)
            last_tensor = KL.BatchNormalization(axis=batch_norm,
                                                name=name)(last_tensor)

    # Compute likelyhood prediction (no activation yet)
    name = '%s_likelihood' % prefix
    last_tensor = convL(nb_labels, 1, activation=None, name=name)(last_tensor)
    like_tensor = last_tensor

    # output prediction layer
    # we use a softmax to compute P(L_x|I) where x is each location
    if final_pred_activation == 'softmax':
        print("using final_pred_activation %s for %s" %
              (final_pred_activation, model_name))
        name = '%s_prediction' % prefix
        softmax_lambda_fcn = lambda x: keras.activations.softmax(
            x, axis=ndims + 1)
        pred_tensor = KL.Lambda(softmax_lambda_fcn, name=name)(last_tensor)

    # otherwise create a layer that does nothing.
    else:
        name = '%s_prediction' % prefix
        pred_tensor = KL.Activation('linear', name=name)(like_tensor)

    # create the model and retun
    model = Model(inputs=input_tensor, outputs=pred_tensor, name=model_name)
    return model
Example #18
0
 def add_common_layers(y):
     y = layers.advanced_activations.LeakyReLU()(y)
     y = layers.Dropout(0.25)(y)
     return y
def model(reader):
    assert reader.channeltypes == [ChannelType.CHAR, ChannelType.WORD]

    text_1_char = L.Input(shape=(None, ), dtype='int32')
    text_1_word = L.Input(shape=(None, ), dtype='int32')
    text_2_char = L.Input(shape=(None, ), dtype='int32')
    text_2_word = L.Input(shape=(None, ), dtype='int32')

    word_mapping = reader.channels[1].vocabulary_map

    word_weights = gew.generate_embedding_weights(word_mapping)

    word_number = word_weights.shape[0]
    word_embedding_size = word_weights.shape[1]

    char_embedding = L.Embedding(
        len(reader.channels[0].vocabulary_above_cutoff) + 2, 5)

    word_embedding = L.Embedding(output_dim=word_embedding_size,
                                 input_dim=word_number,
                                 trainable=False,
                                 weights=[word_weights])

    # Embed all inputs.
    text_1_char_emb = char_embedding(text_1_char)
    text_1_word_emb = word_embedding(text_1_word)
    text_2_char_emb = char_embedding(text_2_char)
    text_2_word_emb = word_embedding(text_2_word)

    # Define convolutions.
    char_conv8 = L.Convolution1D(filters=200,
                                 kernel_size=8,
                                 strides=1,
                                 activation='relu')
    char_conv4 = L.Convolution1D(filters=200,
                                 kernel_size=4,
                                 strides=1,
                                 activation='relu')
    word_conv8 = L.Convolution1D(filters=100,
                                 kernel_size=8,
                                 strides=1,
                                 activation='relu')

    # Convolve all inputs and pool them to a representation of the texts.
    text_1_char_repr_8 = L.GlobalMaxPooling1D()(char_conv8(text_1_char_emb))
    text_1_char_repr_4 = L.GlobalMaxPooling1D()(char_conv4(text_1_char_emb))
    text_1_word_repr_8 = L.GlobalMaxPooling1D()(word_conv8(text_1_word_emb))

    text_2_char_repr_8 = L.GlobalMaxPooling1D()(char_conv8(text_2_char_emb))
    text_2_char_repr_4 = L.GlobalMaxPooling1D()(char_conv4(text_2_char_emb))
    text_2_word_repr_8 = L.GlobalMaxPooling1D()(word_conv8(text_2_word_emb))

    # Representation of texts are concatenation of all representations.
    text_1_repr = L.Concatenate()(
        [text_1_char_repr_8, text_1_char_repr_4, text_1_word_repr_8])
    text_2_repr = L.Concatenate()(
        [text_2_char_repr_8, text_2_char_repr_4, text_2_word_repr_8])

    # Find the difference between the texts and learn on it.
    abs_diff = L.merge(inputs=[text_1_repr, text_2_repr],
                       mode=lambda x: abs(x[0] - x[1]),
                       output_shape=lambda x: x[0],
                       name='absolute_difference')

    dense1 = L.Dense(500, activation='relu')(abs_diff)
    dense2 = L.Dense(500, activation='relu')(dense1)

    pruned = L.Dropout(0.3)(dense2)

    output = L.Dense(2, activation='softmax', name='output')(pruned)

    model = Model(inputs=[text_1_char, text_1_word, text_2_char, text_2_word],
                  outputs=output)

    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model
Example #20
0
def Conv2DMultiTaskIn1(x_train, y_train, ddg_train, x_test, y_test, ddg_test,
                       x_val, y_val, ddg_val, class_weights_dict, modeldir):
    K.clear_session()
    summary = False
    verbose = 0
    # setHyperParams------------------------------------------------------------------------------------------------
    batch_size = 64
    epochs = 200

    lr = 0.0049

    optimizer = 'sgd'

    activator = 'elu'

    basic_conv2D_layers = 1
    basic_conv2D_filter_num = 16

    loop_dilation2D_layers = 2
    loop_dilation2D_filter_num = 64
    loop_dilation2D_dropout_rate = 0.2008
    dilation_lower = 2
    dilation_upper = 16

    reduce_layers = 3  # conv 3 times: 120 => 60 => 30 => 15
    # print(reduce_layers)

    reduce_conv2D_filter_num = 16
    reduce_conv2D_dropout_rate = 0.1783
    residual_stride = 2

    dense1_num = 128
    dense2_num = 32

    drop_num = 0.2605

    kernel_size = (3, 3)
    pool_size = (2, 2)
    initializer = 'random_uniform'
    padding_style = 'same'
    loss_type = 'mse'
    metrics = ('mae', pearson_r)

    my_callbacks = [
        callbacks.ReduceLROnPlateau(
            monitor='val_loss',
            factor=0.5,
            patience=5,
        )
    ]

    if lr > 0:
        if optimizer == 'adam':
            chosed_optimizer = optimizers.Adam(lr=lr)
        elif optimizer == 'sgd':
            chosed_optimizer = optimizers.SGD(lr=lr)
        elif optimizer == 'rmsprop':
            chosed_optimizer = optimizers.RMSprop(lr=lr)

    # build --------------------------------------------------------------------------------------------------------
    ## basic Conv2D
    input_layer = Input(shape=x_train.shape[1:])
    y = layers.Conv2D(basic_conv2D_filter_num,
                      kernel_size,
                      padding=padding_style,
                      kernel_initializer=initializer,
                      activation=activator)(input_layer)
    y = layers.BatchNormalization(axis=-1)(y)
    if basic_conv2D_layers == 2:
        y = layers.Conv2D(basic_conv2D_filter_num,
                          kernel_size,
                          padding=padding_style,
                          kernel_initializer=initializer,
                          activation=activator)(y)
        y = layers.BatchNormalization(axis=-1)(y)

    ## loop with Conv2D with dilation (padding='same')
    for _ in range(loop_dilation2D_layers):
        y = layers.Conv2D(loop_dilation2D_filter_num,
                          kernel_size,
                          padding=padding_style,
                          dilation_rate=dilation_lower,
                          kernel_initializer=initializer,
                          activation=activator)(y)
        y = layers.BatchNormalization(axis=-1)(y)
        y = layers.Dropout(loop_dilation2D_dropout_rate)(y)
        dilation_lower *= 2
        if dilation_lower > dilation_upper:
            dilation_lower = 2

    ## Conv2D with dilation (padding='valaid') and residual block to reduce dimention.
    for _ in range(reduce_layers):
        y = layers.Conv2D(reduce_conv2D_filter_num,
                          kernel_size,
                          padding=padding_style,
                          kernel_initializer=initializer,
                          activation=activator)(y)
        y = layers.BatchNormalization(axis=-1)(y)
        y = layers.Dropout(reduce_conv2D_dropout_rate)(y)
        y = layers.MaxPooling2D(pool_size, padding=padding_style)(y)
        residual = layers.Conv2D(reduce_conv2D_filter_num,
                                 1,
                                 strides=residual_stride,
                                 padding='same')(input_layer)
        y = layers.add([y, residual])
        residual_stride *= 2

    ## flat & dense
    y = layers.Flatten()(y)
    y = layers.Dense(dense1_num, activation=activator)(y)
    y = layers.BatchNormalization(axis=-1)(y)
    y = layers.Dropout(drop_num)(y)
    y = layers.Dense(dense2_num, activation=activator)(y)
    y = layers.BatchNormalization(axis=-1)(y)
    y = layers.Dropout(drop_num)(y)

    output_layer = layers.Dense(1)(y)

    model = models.Model(inputs=input_layer, outputs=output_layer)

    if summary:
        model.summary()

    model.compile(
        optimizer=chosed_optimizer,
        loss=loss_type,
        metrics=list(metrics)  # accuracy
    )

    K.set_session(tf.Session(graph=model.output.graph))
    init = K.tf.global_variables_initializer()
    K.get_session().run(init)

    result = model.fit(
        x=x_train,
        y=ddg_train,
        batch_size=batch_size,
        epochs=epochs,
        verbose=verbose,
        callbacks=my_callbacks,
        validation_data=(x_test, ddg_test),
        shuffle=True,
    )
    # print('\n----------History:\n%s'%result.history)
    model_json = model.to_json()
    with open(modeldir + '/model.json', 'w') as json_file:
        json_file.write(model_json)
    return model, result.history
# 将28*28的方阵变成向量
train_images = train_images.reshape((60000, 28 * 28)).astype('float')
test_images = test_images.reshape((10000, 28 * 28)).astype('float')
# 1 -> [0 1 0 0 0...]
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

network = models.Sequential()
network.add(
    layers.Dense(
        units=128,
        activation='relu',
        input_shape=(28 * 28, ),
        kernel_regularizer=regularizers.l1(0.0001)))  # 正则化 lambda=0.0001
network.add(layers.Dropout(0.01))  # 防止过拟合
network.add(
    layers.Dense(units=32,
                 activation='relu',
                 kernel_regularizer=regularizers.l1(0.0001)))
network.add(layers.Dropout(0.01))
network.add(layers.Dense(units=10, activation='softmax'))

# 优化器:RMSprop   损失函数:交叉熵损失函数
network.compile(optimizer=RMSprop(lr=0.001),
                loss='categorical_crossentropy',
                metrics=['accuracy'])

# 训练网络, epochs训练回合, batch_size每次训练给的数据
network.fit(train_images, train_labels, epochs=20, batch_size=128, verbose=2)
                      input_shape=(h, w, 1 if bw == 0 else 3),
                      padding='valid'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(64, (5, 5), activation='relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Conv2D(256, (3, 3), activation='relu'))
    model.add(layers.BatchNormalization())
    model.add(layers.MaxPooling2D((2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(2048, activation='relu'))
    model.add(layers.Dropout(0.2))
    model.add(layers.Dense(512, activation='relu'))
    model.add(layers.Dropout(0.2))
    model.add(layers.Dense(64, activation='relu'))
    model.add(layers.Dropout(0.2))
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['acc'])

print(model.summary())

history = model.fit(train_set,
                    train_label,
                    validation_data=(val_set, val_label),
                    epochs=int(epocs),
Example #23
0
    X_train, X_test, y_train, y_test = train_test_split(headlines,
                                                        targets,
                                                        test_size=0.2,
                                                        random_state=0)

    return X_train, X_test, y_train, y_test


if __name__ == '__main__':
    X_train, X_test, y_train, y_test = preprocess()

    clf = models.Sequential()
    clf.add(layers.Dense(256, activation='relu', input_shape=(X_train.shape[1],)))
    clf.add(layers.Dense(256, activation='relu'))
    clf.add(layers.Dense(256, activation='relu'))
    clf.add(layers.Dropout(rate=0.2))
    clf.add(layers.Dense(256, activation='relu'))
    clf.add(layers.Dropout(rate=0.2))
    clf.add(layers.Dense(41))  # 41是文本类型数
    clf.add(layers.Activation('softmax'))
    clf.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])

    clf.fit(X_train, y_train, epochs=35, batch_size=100, verbose=2)

    # test model

    aa = clf.predict(X_test)  # 具体看测试集预测情况
    for i in range(300):
        print(aa[i].argmax(), y_test[i].argmax(), '\n')

    print("RESULT ON TEST: ", clf.evaluate(X_test, y_test, batch_size=1000))
Example #24
0
def multi_net(img_rows, img_cols, color_type, num_classes=None):
    small = L.Input(shape=(img_rows, img_cols, color_type), name='small')

    x = conv_block(small, 5)
    x = L.Conv2D(36, (5, 5), activation='relu')(small)
    x = L.Conv2D(48, (3, 3), activation='relu')(x)
    x = L.Flatten()(x)
    x1 = L.Dense(256)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)

    logits1 = L.Dense(num_classes, activation='softmax')(x)

    medium = L.Input(shape=(img_rows * 2, img_cols * 2, color_type),
                     name='medium')
    x = conv_block(medium, 5)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = conv_block(x, 3)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Flatten()(x)
    x2 = L.Dense(256)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)

    logits2 = L.Dense(num_classes, activation='softmax')(x)

    large = L.Input(shape=(img_rows * 3, img_cols * 3, color_type),
                    name='large')

    x = conv_block(large, 5)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = conv_block(x, 3)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Conv2D(16, (3, 3), activation='relu')(x)
    x = L.Flatten()(x)
    x3 = L.Dense(256)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)
    x = L.Dense(512, activation='relu')(x)
    x = L.Dropout(0.4)(x)

    logits3 = L.Dense(num_classes, activation='softmax')(x)

    # # combine all patch
    # merge0=L.concatenate([x1, x2, x3],axis=-1)
    # merge1=L.Dense(1024)(merge0)
    # merge2=L.Activation('relu')(merge1)
    # merge2 = L.Dropout(0.4)(merge2)

    # merge3=L.Dense(512)(merge2)
    # merge3=L.Activation('relu')(merge3)
    # merge3 = L.Dropout(0.4)(merge3)

    # logits=L.Dense(num_classes,activation='softmax')(merge0)
    logits = L.average([logits1, logits2, logits3])

    new_model = K.models.Model([small, medium, large], logits)
    sgd = K.optimizers.SGD(lr=0.001, momentum=0.99, decay=1e-4)
    new_model.compile(optimizer=sgd,
                      loss='categorical_crossentropy',
                      metrics=['acc'])
    return new_model
Example #25
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.inputs = layers.Input(shape=shape)

        self.f_block = layers.Conv3D(4, (3, 3, 3), activation='relu',
                                         kernel_regularizer=regularizers.l2(self.re_rate),
                                         padding='same')(self.inputs)
        self.bn = layers.BatchNormalization()(self.f_block)
        self.mp1 = layers.MaxPooling3D((2, 2, 2))(self.bn)

        self.f_block1 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.mp1)
        self.bn = layers.BatchNormalization()(self.f_block1)
        self.f_block1 = layers.Conv3D(16, (1, 1, 1), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.bn)
        self.f_block1 = layers.BatchNormalization()(self.f_block1)
        self.mp2 = layers.MaxPooling3D((2, 2, 2))(self.f_block1)

        self.f_block2 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.mp2)
        self.f_block2 = layers.BatchNormalization()(self.f_block2)
        self.f_block2 = layers.Conv3D(32, (1, 1, 1), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.f_block2)
        self.f_block2 = layers.BatchNormalization()(self.f_block2)

        self.mp3 = layers.MaxPooling3D((2, 2, 2))(self.f_block2)

        self.f_block3 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.mp3)
        self.f_block3 = layers.BatchNormalization()(self.f_block3)
        self.f_block3 = layers.Conv3D(64, (1, 1, 1), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.f_block3)
        self.f_block3 = layers.BatchNormalization()(self.f_block3)
        # self.mp4 = layers.MaxPooling3D((2, 2, 2))(self.f_block3)

        self.b_back3 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(self.f_block3)
        self.b_back3 = layers.BatchNormalization()(self.b_back3)
        self.b_back3 = layers.Conv3D(64, (1, 1, 1), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.b_back3)
        self.b_back3 = layers.BatchNormalization()(self.b_back3)

        self.cat1 = layers.concatenate([self.f_block3, self.b_back3])
        self.bn4 = layers.BatchNormalization()(self.cat1)

        self.b_back2 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(layers.UpSampling3D((2, 2, 2))(self.bn4))
        self.b_back2 = layers.BatchNormalization()(self.b_back2)
        self.b_back2 = layers.Conv3D(64, (1, 1, 1), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(self.b_back2)
        self.b_back2 = layers.BatchNormalization()(self.b_back2)
        self.cat2 = layers.concatenate([self.mp2, self.b_back2])
        self.bn = layers.BatchNormalization()(self.cat2)

        self.b_back1 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(layers.UpSampling3D((2, 2, 2))(self.bn))
        self.b_back1 = layers.BatchNormalization()(self.b_back1)
        self.b_back1 = layers.Conv3D(32, (1, 1, 1), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.b_back1)
        self.b_back1 = layers.BatchNormalization()(self.b_back1)

        self.cat3 = layers.concatenate([self.mp1, self.b_back1])

        self.gb = layers.GlobalAveragePooling3D()(self.cat3)

        self.drop = layers.Dropout(rate=0.7)(self.gb)

        self.dense1 = layers.Dense(128, activation='relu')(self.drop)
        self.dense1 = layers.Dropout(rate=0.6)(self.dense1)
        self.dense2 = layers.Dense(64, activation='relu')(self.dense1)
        self.dense3 = layers.Dense(4, activation='softmax')(self.dense2)

        self.model = keras.Model(input=self.inputs, output=self.dense3)
Example #26
0
 def __init__(self, name=None):
     super().__init__(name=name)
     self.d1 = layers.Dense(1000)
     self.d2 = layers.Dense(1000)
     self.dropout = layers.Dropout(0.1)
# In[2]:

discriminator_input = layers.Input(shape=(height, width, channels))
x = layers.Conv2D(128, 3)(discriminator_input)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Conv2D(128, 4, strides=2)(x)
x = layers.LeakyReLU()(x)
x = layers.Flatten()(x)

# One dropout layer - important trick!
x = layers.Dropout(0.4)(x)

# Classification layer
x = layers.Dense(1, activation='sigmoid')(x)

discriminator = keras.models.Model(discriminator_input, x)
discriminator.summary()

# To stabilize training, we use learning rate decay
# and gradient clipping (by value) in the optimizer.
discriminator_optimizer = keras.optimizers.RMSprop(lr=0.0008,
                                                   clipvalue=1.0,
                                                   decay=1e-8)
discriminator.compile(optimizer=discriminator_optimizer,
                      loss='binary_crossentropy')
    def retain(ARGS):
        '''Create the model'''

        #Define the constant for model saving
        reshape_size = ARGS.emb_size + ARGS.numeric_size
        if ARGS.allow_negative:
            embeddings_constraint = FreezePadding()
            beta_activation = 'tanh'
            output_constraint = None
        else:
            embeddings_constraint = FreezePadding_Non_Negative()
            beta_activation = 'sigmoid'
            output_constraint = non_neg()

        #Get available gpus , returns empty list if none
        glist = get_available_gpus()

        def reshape(data):
            '''Reshape the context vectors to 3D vector'''
            return K.reshape(x=data, shape=(K.shape(data)[0], 1, reshape_size))

        #Code Input
        codes = L.Input((None, None), name='codes_input')
        inputs_list = [codes]
        #Calculate embedding for each code and sum them to a visit level
        codes_embs_total = L.Embedding(
            ARGS.num_codes + 1,
            ARGS.emb_size,
            name='embedding',
            embeddings_constraint=embeddings_constraint)(codes)
        codes_embs = L.Lambda(lambda x: K.sum(x, axis=2))(codes_embs_total)
        #Numeric input if needed
        if ARGS.numeric_size:
            numerics = L.Input((None, ARGS.numeric_size), name='numeric_input')
            inputs_list.append(numerics)
            full_embs = L.concatenate([codes_embs, numerics], name='catInp')
        else:
            full_embs = codes_embs

        #Apply dropout on inputs
        full_embs = L.Dropout(ARGS.dropout_input)(full_embs)

        #Time input if needed
        if ARGS.use_time:
            time = L.Input((None, 1), name='time_input')
            inputs_list.append(time)
            time_embs = L.concatenate([full_embs, time], name='catInp2')
        else:
            time_embs = full_embs

        #Setup Layers
        #This implementation uses Bidirectional LSTM instead of reverse order
        #    (see https://github.com/mp2893/retain/issues/3 for more details)

        #If training on GPU and Tensorflow use CuDNNLSTM for much faster training
        if glist:
            alpha = L.Bidirectional(L.CuDNNLSTM(ARGS.recurrent_size,
                                                return_sequences=True),
                                    name='alpha')
            beta = L.Bidirectional(L.CuDNNLSTM(ARGS.recurrent_size,
                                               return_sequences=True),
                                   name='beta')
        else:
            alpha = L.Bidirectional(L.LSTM(ARGS.recurrent_size,
                                           return_sequences=True,
                                           implementation=2),
                                    name='alpha')
            beta = L.Bidirectional(L.LSTM(ARGS.recurrent_size,
                                          return_sequences=True,
                                          implementation=2),
                                   name='beta')

        alpha_dense = L.Dense(1, kernel_regularizer=l2(ARGS.l2))
        beta_dense = L.Dense(ARGS.emb_size + ARGS.numeric_size,
                             activation=beta_activation,
                             kernel_regularizer=l2(ARGS.l2))

        #Compute alpha, visit attention
        alpha_out = alpha(time_embs)
        alpha_out = L.TimeDistributed(alpha_dense,
                                      name='alpha_dense_0')(alpha_out)
        alpha_out = L.Softmax(axis=1)(alpha_out)
        #Compute beta, codes attention
        beta_out = beta(time_embs)
        beta_out = L.TimeDistributed(beta_dense, name='beta_dense_0')(beta_out)
        #Compute context vector based on attentions and embeddings
        c_t = L.Multiply()([alpha_out, beta_out, full_embs])
        c_t = L.Lambda(lambda x: K.sum(x, axis=1))(c_t)
        #Reshape to 3d vector for consistency between Many to Many and Many to One implementations
        contexts = L.Lambda(reshape)(c_t)

        #Make a prediction
        contexts = L.Dropout(ARGS.dropout_context)(contexts)
        output_layer = L.Dense(1,
                               activation='sigmoid',
                               name='dOut',
                               kernel_regularizer=l2(ARGS.l2),
                               kernel_constraint=output_constraint)

        #TimeDistributed is used for consistency
        # between Many to Many and Many to One implementations
        output = L.TimeDistributed(output_layer,
                                   name='time_distributed_out')(contexts)
        #Define the model with appropriate inputs
        model = Model(inputs=inputs_list, outputs=[output])

        return model
Example #29
0
def Conv2DClassifierIn1(x_train,y_train,x_test,y_test):
        summary = True
        verbose = 1

        # setHyperParams------------------------------------------------------------------------------------------------
        batch_size = {{choice([512,256,128,64,32])}}
        epoch = {{choice([300,275,250,225,200,175,150,125,100,75,50,25])}}

        conv_block={{choice(['four', 'three', 'two'])}}

        conv1_num={{choice([64,32,16,8])}}
        conv2_num={{choice([128,64,32,16])}}
        conv3_num={{choice([128,64,32])}}
        conv4_num={{choice([256,128,64,32])}}

        dense1_num={{choice([512, 256, 128])}}
        dense2_num={{choice([256, 128, 64])}}

        l1_regular_rate = {{uniform(0.00001, 1)}}
        l2_regular_rate = {{uniform(0.000001, 1)}}
        drop1_num={{uniform(0.1, 1)}}
        drop2_num={{uniform(0.0001, 1)}}

        activator={{choice(['tanh','relu','elu'])}}
        optimizer={{choice(['SGD','rmsprop','adam'])}}

        #---------------------------------------------------------------------------------------------------------------
        kernel_size = (3, 3)
        pool_size = (2, 2)
        initializer = 'random_uniform'
        padding_style = 'same'
        loss_type='binary_crossentropy'
        metrics=['accuracy']
        my_callback = None
        # early_stopping = EarlyStopping(monitor='val_loss', patience=4)
        # checkpointer = ModelCheckpoint(filepath='keras_weights.hdf5',
        #                                verbose=1,
        #                                save_best_only=True)
        # my_callback = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2,
        #                                           patience=5, min_lr=0.0001)



        # build --------------------------------------------------------------------------------------------------------
        input_layer = Input(shape=x_train.shape[1:])
        conv = layers.Conv2D(conv1_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(input_layer)
        conv = layers.Conv2D(conv1_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
        pool = layers.MaxPooling2D(pool_size,padding=padding_style)(conv)
        if conv_block == 'two':
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)
        elif conv_block == 'three':
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)

            conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)
        elif conv_block == 'four':
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv2_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)

            conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv3_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)

            conv = layers.Conv2D(conv4_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(pool)
            conv = layers.Conv2D(conv4_num,kernel_size,padding=padding_style,kernel_initializer=initializer,activation=activator)(conv)
            BatchNorm = layers.BatchNormalization(axis=-1)(conv)
            pool = layers.MaxPooling2D(pool_size,padding=padding_style)(BatchNorm)

        flat = layers.Flatten()(pool)
        drop = layers.Dropout(drop1_num)(flat)

        dense = layers.Dense(dense1_num, activation=activator, kernel_regularizer=regularizers.l1_l2(l1=l1_regular_rate,l2=l2_regular_rate))(drop)
        BatchNorm = layers.BatchNormalization(axis=-1)(dense)
        drop  = layers.Dropout(drop2_num)(BatchNorm)

        dense = layers.Dense(dense2_num, activation=activator, kernel_regularizer=regularizers.l1_l2(l1=l1_regular_rate,l2=l2_regular_rate))(drop)

        output_layer = layers.Dense(len(np.unique(y_train)),activation='softmax')(dense)

        model = models.Model(inputs=input_layer, outputs=output_layer)

        if summary:
            model.summary()

 # train(self):
        class_weights = class_weight.compute_class_weight('balanced', np.unique(y_train), y_train.reshape(-1))
        class_weights_dict = dict(enumerate(class_weights))
        model.compile(optimizer=optimizer,
                      loss=loss_type,
                      metrics=metrics # accuracy
                      )

        result = model.fit(x=x_train,
                           y=y_train,
                  batch_size=batch_size,
                  epochs=epoch,
                  verbose=verbose,
                  callbacks=my_callback,
                  validation_data=(x_test, y_test),
                  shuffle=True,
                  class_weight=class_weights_dict
                  )

        validation_acc = np.amax(result.history['val_acc'])
        print('Best validation acc of epoch:', validation_acc)
        return {'loss': -validation_acc, 'status': STATUS_OK, 'model': model}
# 计算val_steps,这是计算需要从val_gen中抽取多少次
val_steps=(valnum-lookback)//batch_size
# 查看训练集需要抽取的次数
train_steps=trainnum//batch_size

from keras.callbacks import EarlyStopping
early_stopping=EarlyStopping(monitor="val_loss",patience=30)

#创建模型
model1=models.Sequential()
model1.add(layers.Dense(512,activation="relu",input_shape=(lookback//step,data.shape[-1])))
model1.add(layers.Conv1D(filters=512,kernel_size=3,activation="relu"))
model1.add(layers.MaxPooling1D(5))
model1.add(layers.Conv1D(filters=512,kernel_size=3,activation="relu"))
model1.add(layers.GlobalMaxPool1D())
model1.add(layers.Dropout(0.5))
model1.add(layers.Dense(8,activation="softmax"))
model1.summary()

model1.compile(optimizer=optimizers.RMSprop(),
               loss="categorical_crossentropy",
               metrics=["acc"])
history1=model1.fit_generator(train_gen,
                              steps_per_epoch=train_steps,
                              epochs=200,
                              validation_data=val_gen,
                              validation_steps=val_steps,
                              callbacks=[early_stopping])

# 绘制结果
loss=history1.history["loss"]