def getPredictions(x_train, x_test, train, test):
    embedding_dim = 200
    embedding_matrix = create_embedding_matrix('data\\glove.6B.200d.txt',
                                               tokenizer.word_index,
                                               embedding_dim)
    model = Sequential()
    model.add(
        layers.Embedding(vocab_size,
                         embedding_dim,
                         weights=[embedding_matrix],
                         input_length=maxlen,
                         trainable=True))
    model.add(layers.Conv1D(64, 3, activation='relu'))
    model.add(layers.GlobalMaxPool1D())
    model.add(layers.Dense(10, activation='relu'))
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=[f1, 'accuracy'])
    #model.summary()

    history = model.fit(x_train,
                        train,
                        epochs=20,
                        verbose=False,
                        validation_data=(x_test, test),
                        batch_size=10)
    val = model.evaluate(x_train, train, verbose=False)
    val = model.evaluate(x_test, test, verbose=False)

    predictions = model.predict(x_test)
    return predictions
Example #2
0
    def __init__(self, parameters):
        super(CNN_MODEL, self).__init__(name='CNN-Model')

        # Get the required parameters
        vocabulary_size = parameters['vocabulary_size']
        #max_length = parameters['max_length']

        embedding_dimensions = parameters['embedding_dimensions']
        cnn_filters = parameters['cnn_filters']
        dnn_units = parameters['dnn_units']
        dropout_rate = parameters['dropout_rate']
        #kernel_initializer = parameters['kernel_initializer']

        self.embedding = layers.Embedding(vocabulary_size,
                                          embedding_dimensions)

        self.cnn_layer1 = layers.Conv1D(filters=cnn_filters,
                                        kernel_size=2,
                                        padding="valid",
                                        activation="relu")
        self.cnn_layer2 = layers.Conv1D(filters=cnn_filters,
                                        kernel_size=3,
                                        padding="valid",
                                        activation="relu")
        self.cnn_layer3 = layers.Conv1D(filters=cnn_filters,
                                        kernel_size=4,
                                        padding="valid",
                                        activation="relu")
        self.pool = layers.GlobalMaxPool1D()

        self.dense_1 = layers.Dense(units=dnn_units, activation="relu")
        self.dropout = layers.Dropout(rate=dropout_rate)

        self.last_dense = layers.Dense(units=1, activation="sigmoid")
Example #3
0
def DNN_MaxPooling1D(embedding_dim, vocab_size, maxlen):
    '''It is a sequential four layer neural network where first layer is an Embedding layer, second layer
    is maxpooling layer followed by a dense layer using relu activation and finally the last dense layer using
    sigmoid activation function.'''

    model = Sequential()  # Sequential is a Keras API which allows us to create models layer-by-layer piecewise.
    model.add(layers.Embedding(input_dim=vocab_size,
                               output_dim=embedding_dim,
                               input_length=maxlen))  # It is the first, embedding layer of the model which turns
    # positive integers(indexes) into dense vectors of fixed size. input_dim = vocab_size(4933 in
    # this case). Output_dimension = embedding_dim(50 in this case), is the dimension of dense embedding.
    # input_length = maxlen(100 in this case), is the length of input sequence.
    model.add(layers.GlobalMaxPool1D())  # using maxpooling layer to reduce the spatial size of the representation.
    model.add(layers.Dense(10, activation='relu'))  # Dense is used to create densely-connected
    # Neural Network layers. we have taken units:10, which means output array shape will be(*, 10). input_dim is the
    # dimension of input fed to the layer and activation:relu, basically uses rectified linear unit to convert input
    # signal into output signal at a A-NN node. It has been seen that it provides better convergence and also it
    # also rectifies vanishing gradient problem.
    model.add(layers.Dense(1, activation='sigmoid'))  # it is the last layer whose output shape array shape
    # will be(*, 1). The activation function used is Sigmoid whose range is between 0 and 1.
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    #  compile is a method of sequential class which configures the model for training. We are using binary_crossentropy
    #  loss function to calculate loss, and adam optimizer. we want to evaluate just the accuracy metric.
    model.summary()  # prints a summary representation of the model.
    return model
Example #4
0
def createRCNN(word_index, embedding_matrix):
    input_layer = layers.Input((1000, ))

    embedding_layer = layers.Embedding(len(word_index) + 1,
                                       300,
                                       weights=[embedding_matrix],
                                       trainable=False)(input_layer)

    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    rnn_layer = layers.Bidirectional(layers.GRU(
        50, return_sequences=True))(embedding_layer)

    conv_layer = layers.Convolution1D(100, 3, activation="relu")(rnn_layer)

    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    output_layer1 = layers.Dense(50, activation="relu")(pooling_layer)
    output_layer1 = layers.Dropout(0.25)(output_layer1)
    output_layer2 = layers.Dense(1, activation="sigmoid")(output_layer1)

    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer=optimizers.Adam(), loss='binary_crossentropy')

    return model
Example #5
0
def create_cnn(inp_size):
    # Add an Input Layer
    input_layer = layers.Input((inp_size, ))

    # embedding layer learnt from above
    embedding_layer = layers.Embedding(vocab_size, 200)(input_layer)

    # add dropout on this layer
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    # Add the convolutional Layer
    conv_layer = layers.Convolution1D(100, 3,
                                      activation="tanh")(embedding_layer)

    # Add the pooling Layer
    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    # Add the output Layers
    output_layer1 = layers.Dense(50, activation="relu")(pooling_layer)
    output_layer1 = layers.Dropout(0.25)(output_layer1)
    output_layer2 = layers.Dense(1, activation="sigmoid")(output_layer1)

    # Compile the model
    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer=optimizers.Adam(),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    return model
def cnn(xtrain, ytrain, xvalid, yvalid, epochs=3):
    # Add an Input Layer
    input_layer = layers.Input((70, ))

    # Add the word embedding Layer
    embedding_layer = layers.Embedding(len(word_index) + 1,
                                       300,
                                       weights=[embedding_matrix],
                                       trainable=False)(input_layer)
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    # Add the convolutional Layer
    conv_layer = layers.Convolution1D(100, 4,
                                      activation="relu")(embedding_layer)

    # Add the pooling Layer
    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    # Add the output Layers
    output_layer1 = layers.Dense(50, activation="relu")(pooling_layer)
    output_layer1 = layers.Dropout(0.25)(output_layer1)
    output_layer2 = layers.Dense(4, activation="softmax")(output_layer1)

    # Compile the model
    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer='adam',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
    model.fit(xtrain, ytrain, batch_size=256, epochs=epochs)
    predictions = model.predict(xvalid)
    predictions = predictions.argmax(axis=-1)
    accuracy = model.evaluate(xvalid, yvalid, verbose=0)
    f1score = metrics.f1_score(valid_y, predictions, average='weighted')
    return accuracy, f1score
Example #7
0
 def create_rcnn():
     # Add an Input Layer
     input_layer = layers.Input((70, ))
 
     # Add the word embedding Layer
     embedding_layer = layers.Embedding(len(word_index) + 1, 300, weights=[embedding_matrix], trainable=False)(input_layer)
     embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)
     
     # Add the recurrent layer
     layers.Bidirectional(layers.GRU(50, return_sequences=True))(embedding_layer)
     
     # Add the convolutional Layer
     conv_layer = layers.Convolution1D(100, 3, activation="relu")(embedding_layer)
 
     # Add the pooling Layer
     pooling_layer = layers.GlobalMaxPool1D()(conv_layer)
 
     # Add the output Layers
     output_layer1 = layers.Dense(50, activation="relu")(pooling_layer)
     output_layer1 = layers.Dropout(0.25)(output_layer1)
     output_layer2 = layers.Dense(units=max(training_label_encoded) + 1, activation="softmax", name="ouput_layer")(output_layer1)
 
     # Compile the model
     model = models.Model(inputs=input_layer, outputs=output_layer2)
     model.compile(optimizer=optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=["sparse_categorical_accuracy"])
     
     return model
Example #8
0
def create_cnn():
    # Add an Input Layer
    input_layer = layers.Input((70, ))

    # Add the word embedding Layer
    embedding_layer = layers.Embedding(len(word_index) + 1,
                                       50,
                                       weights=[embedding_matrix],
                                       trainable=False)(input_layer)
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    # Add the convolutional Layer
    conv_layer = layers.Convolution1D(100, 3,
                                      activation="relu")(embedding_layer)

    # Add the pooling Layer
    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    # Add the output Layers
    output_layer1 = layers.Dense(50, activation="relu")(pooling_layer)
    output_layer1 = layers.Dropout(0.25)(output_layer1)
    output_layer2 = layers.Dense(1, activation="sigmoid")(output_layer1)

    # Compile the model
    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer=optimizers.Adam(), loss='binary_crossentropy')

    return model
Example #9
0
def create_cnn():
    # Add an Input Layer
    input_layer = layers.Input((100, ))

    # Add the word embedding Layer
    embedding_layer = layers.Embedding(10000, 100, trainable=True)(input_layer)
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    # Add the convolutional Layer
    conv_layer = layers.Conv1D(100,
                               3,
                               padding='valid',
                               activation="relu",
                               strides=1)(embedding_layer)

    # Add the pooling Layer
    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    # Add the output Layers
    output_layer1 = layers.Dense(1, activation="sigmoid")(pooling_layer)

    # Compile the model
    model = models.Model(inputs=input_layer, outputs=output_layer1)
    model.compile(optimizer=optimizers.Adam(),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    model.summary()
    return model
Example #10
0
    def model_3(self):
        embedding_matrix = self.build_myself_embedding_matrix()
        input = layers.Input(shape=(self.max_words,))
        embedding = layers.Embedding(input_dim=embedding_matrix.shape[0], output_dim=embedding_matrix.shape[1],
                                     input_length=self.max_words, weights=[embedding_matrix])
        x = layers.SpatialDropout1D(0.2)(embedding(input))
        x = layers.Bidirectional(layers.GRU(400, return_sequences=True))(x)
        x = layers.Bidirectional(layers.GRU(400, return_sequences=True))(x)
        avg_pool = layers.GlobalAveragePooling1D()(x)
        max_pool = layers.GlobalMaxPool1D()(x)
        concat = layers.concatenate([avg_pool, max_pool])

        x = layers.Dense(1024)(concat)
        x = layers.BatchNormalization()(x)
        x = layers.Activation(activation='relu')(x)
        x = layers.Dropout(0.2)(x)

        x = layers.Dense(512)(x)
        x = layers.BatchNormalization()(x)
        x = layers.Activation(activation='relu')(x)
        x = layers.Dropout(0.2)(x)
        output = layers.Dense(self.class_num, activation='softmax')(x)

        model = models.Model(input=input, output=output)
        print(model.summary())
        return model
Example #11
0
    def trainDeepModelOnEmbeddings(self, X_train, y_train, X_test, y_test):
        model_eval = ModelEvaluation()
        embedding_dim = 50
        input_dim = X_train.shape[1]

        model = models.Sequential()
        model.add(
            layers.Embedding(input_dim=input_dim,
                             output_dim=embedding_dim,
                             input_length=None))
        model.add(layers.GlobalMaxPool1D())
        model.add(layers.Dense(10, activation='relu'))
        model.add(layers.Dense(1, activation='sigmoid'))
        model.compile(optimizer='adam',
                      loss='binary_crossentropy',
                      metrics=['accuracy'])
        model.summary()

        history = model.fit(X_train,
                            y_train,
                            epochs=1,
                            verbose=False,
                            validation_data=(X_test, y_test),
                            batch_size=10)
        loss, accuracy = model.evaluate(X_train, y_train, verbose=False)
        print("Training Accuracy: {:.4f}".format(accuracy))
        loss, accuracy = model.evaluate(X_test, y_test, verbose=False)
        print("Testing Accuracy:  {:.4f}".format(accuracy))
        model_eval.plot_history(history)
        return True
Example #12
0
def black_box(vocab_size, embedding_dim, embedding_matrix, maxlen):
    """
    Return a Keras fast-forward NN model with a embedding layer and two dense layers
    """
    model = Sequential()

    if embedding_matrix is not None:
        model.add(
            layers.Embedding(input_dim=vocab_size,
                             output_dim=embedding_dim,
                             weights=[embedding_matrix],
                             input_length=maxlen,
                             trainable=trainable), )
    else:
        model.add(
            layers.Embedding(input_dim=vocab_size,
                             output_dim=embedding_dim,
                             input_length=maxlen,
                             trainable=trainable), )
    model.add(layers.GlobalMaxPool1D())
    model.add(layers.Dense(10, activation='relu'))
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    return model
Example #13
0
def build_text_cnn_model(vocabulary_size=None,
                         n_classes=None,
                         embedding_size=300,
                         max_len=None,
                         hidden_size=128,
                         conv_kernels=None,
                         name=None):
    """Generate Text-CNN model for text classification
    """
    assert vocabulary_size is not None
    assert n_classes is not None

    if not conv_kernels:
        conv_kernels = [2, 3, 4]

    input_ = layers.Input(shape=(max_len, ))
    embedding = layers.Embedding(vocabulary_size, embedding_size)(input_)

    x = embedding

    multi_convs = []
    for kernel_size in conv_kernels:
        conv = layers.Conv1D(hidden_size, kernel_size, activation='relu')(x)
        conv = layers.GlobalMaxPool1D()(conv)
        multi_convs.append(conv)

    x = layers.Concatenate()(multi_convs)
    x = layers.Dense(n_classes, activation='softmax')(x)

    output = x

    model = Model(inputs=input_, outputs=output, name=name)
    return model
Example #14
0
def myModel(vocab_size, embedding_dim, maxlen, embedding_matrix, X_train,
            labels_train, X_test, labels_test):

    model2 = Sequential()
    model2.add(layers.InputLayer(input_shape=(100, )))
    #taking advantage of the Embedding layer of keras
    #to initialize an embedding layer, three parameters are requires: input_dim which is the vocab size of the text data
    #output_dim which is the size of the output vectors for each word
    #input_length which is the length of the input sequences(sentences)
    #since i'm using GloVe, we'll use their pretrained weights and allow them to be trained to gain higher accuracy
    model2.add(
        layers.Embedding(input_dim=vocab_size,
                         output_dim=embedding_dim,
                         input_length=maxlen,
                         weights=[embedding_matrix],
                         trainable=True))
    model2.add(layers.GlobalMaxPool1D())
    model2.add(layers.Dense(10, activation='relu'))
    model2.add(layers.Dense(1, activation='sigmoid'))
    model2.compile(optimizer='adam',
                   loss='binary_crossentropy',
                   metrics=['accuracy'])
    model2.save('model.h5')
    history = model2.fit(X_train,
                         labels_train,
                         epochs=100,
                         verbose=False,
                         validation_data=(X_test, labels_test),
                         batch_size=10)
    model2.summary()
    loss, accuracy = model2.evaluate(X_train, labels_train, verbose=False)
    print("Training Accuracy: {:.4f}".format(accuracy))
    loss, accuracy = model2.evaluate(X_test, labels_test, verbose=False)
    print("Testing Accuracy:  {:.4f}".format(accuracy))
Example #15
0
def DNN_PretrainedWordEmbeddingGlove(embedding_dim, vocab_size, maxlen, embedding_matrix):
    '''It is a sequential four layer neural network where first layer is an Embedding layer which gets weights from
     pretrained GloVe word-embeddings, second layer is maxpooling layer followed by a dense layer using relu activation
     and finally the last dense layer using sigmoid activation function.'''

    model = Sequential()  # Sequential is a Keras API which allows us to create models layer-by-layer piecewise.
    # TODO: vary trainable between True and False to additionally train the word embeddings.
    model.add(layers.Embedding(vocab_size, embedding_dim,
                               weights=[embedding_matrix],
                               input_length=maxlen,
                               trainable=True))# It is the first, embedding layer of the model which uses pretrained
    # GloVe word embeddings. We can choose to train the word embeddings additionally by setting trainable=True.
    # input_length = maxlen(100 in this case), is the length of input sequence.
    model.add(layers.GlobalMaxPool1D())  # using maxpooling layer to reduce the spatial size of the representation.
    model.add(layers.Dense(10, activation='relu'))  # Dense is used to create densely-connected
    # Neural Network layers. we have taken units:10, which means output array shape will be(*, 10). input_dim is the
    # dimension of input fed to the layer and activation:relu, basically uses rectified linear unit to convert input
    # signal into output signal at a A-NN node. It has been seen that it provides better convergence and also it
    # also rectifies vanishing gradient problem.
    model.add(layers.Dense(1, activation='sigmoid'))  # it is the last layer whose output shape array shape
    # will be(*, 1). The activation function used is Sigmoid whose range is between 0 and 1.
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    #  compile is a method of sequential class which configures the model for training. We are using binary_crossentropy
    #  loss function to calculate loss, and adam optimizer. we want to evaluate just the accuracy metric.
    model.summary()  # prints a summary representation of the model.
    return model
def create_cnn():
    # Adicione uma camada de entrada
    input_layer = layers.Input((70, ))

    # Adicione a camada de incorporação de palavras
    embedding_layer = layers.Embedding(len(word_index) + 1,
                                       300,
                                       weights=[embedding_matrix],
                                       trainable=False)(input_layer)
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)

    # Adicione a camada convolucional
    conv_layer = layers.Convolution1D(90, 3,
                                      activation="relu")(embedding_layer)

    # Adicione a camada de pooling máximo, pega maior valor resltande do mapa de  ativação.

    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)

    # Adicione as camadas de saída
    # camada totalmente conectada para normalização dos dados.
    output_layer1 = layers.Dropout(0.7)(pooling_layer)
    output_layer2 = layers.Dense(1, activation="sigmoid")(output_layer1)

    # Compile o modelo
    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer=optimizers.Adamax(),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    return model
Example #17
0
def char_embedding_graph(input_dim,
                         output_dim,
                         cf,
                         dropout_rate=0.0,
                         regularizer=None,
                         name='c_emb'):
    layers = KM.Sequential(name=name)
    layers.add(
        KL.Embedding(input_dim=input_dim,
                     output_dim=output_dim,
                     embeddings_initializer=init_embedding_weights(
                         None, dropout_rate),
                     trainable=True,
                     embeddings_regularizer=regularizer,
                     name=name + '_emb'))
    layers.add(
        KL.Lambda(lambda x: tf.reshape(x, (-1, cf.WORD_LEN, output_dim)),
                  name=name + '_reshape'))
    layers.add(
        KL.Conv1D(cf.C_CONV_FILTERS,
                  cf.C_CONV_KERNEL,
                  activation='relu',
                  kernel_regularizer=regularizer,
                  name=name + '_conv1d'))
    layers.add(KL.GlobalMaxPool1D(name=name + '_pool1d'))
    return layers
Example #18
0
    def train_model(self):
        if len(self.X_train) == 0:
            self.load_data()

        print("Training model...")

        self.model = Sequential()
        self.model.add(
            layers.Embedding(self.config["vocab_size"],
                             50,
                             input_length=self.config["max_len"]))
        self.model.add(layers.Conv1D(128, 5, activation='relu'))
        self.model.add(layers.GlobalMaxPool1D())
        self.model.add(layers.Dense(10, activation='relu')
                       )  # 4340*10= 43400 weights + 10 bias = 43410 params
        self.model.add(layers.Dense(3, activation='softmax'))

        self.model.compile(optimizer='adam',
                           loss='categorical_crossentropy',
                           metrics=['accuracy'])
        self.model.summary()

        self.model.fit(self.X_train,
                       self.y_train,
                       epochs=100,
                       verbose=False,
                       validation_data=(self.X_test, self.y_test),
                       batch_size=15)

        self.model.save("data/models/cnn.h5")
        print("Done")
        return self.model
Example #19
0
def build_model(tokens, categorical_vectorizer, hid_size=64):
    """ Build a model that maps three data sources to a single linear output: predicted log1p(salary) """
    n_cat_features = len(categorical_vectorizer.vocabulary_)
    n_tokens = len(tokens)
    l_title = L.Input(shape=[None], name="Title")
    l_descr = L.Input(shape=[None], name="FullDescription")
    l_categ = L.Input(shape=[n_cat_features], name="Categorical")
    # Build your monster!

    # <YOUR CODE>
    # Embedding (size_vocabulary,embeding_dim,max_length)
    embedding_dim = 64
    vocabulary_size = n_tokens
    num_filters = 32
    max_length = 10
    nb_filter = 16
    # embedding layer
    title_embedding = L.Embedding(input_dim=n_tokens,
                                  output_dim=embedding_dim)(l_title)
    descr_embedding = L.Embedding(input_dim=n_tokens,
                                  output_dim=embedding_dim)(l_descr)

    # convLayer
    title_conv = L.Conv1D(nb_filter, max_length,
                          activation='relu')(title_embedding)
    descr_conv = L.Conv1D(nb_filter, max_length,
                          activation='relu')(descr_embedding)

    # MaxPooling Layer
    title_pool = L.GlobalMaxPool1D()(title_conv)
    descr_pool = L.GlobalMaxPool1D()(descr_conv)

    # output_layer_title = L.Conv1D(1,kernel_size = 3)(l_title)
    output_layer_categ = L.Dense(hid_size)(l_categ)

    concat = L.Concatenate(axis=-1)(
        [title_pool, descr_pool, output_layer_categ])
    # output_layer2 = L.Dense(hid_size)(output_layer_categ)
    output_layer3 = L.Dense(1)(concat)
    # end of your code

    model = keras.models.Model(inputs=[l_title, l_descr, l_categ],
                               outputs=[output_layer3])
    model.compile('adam',
                  'mean_squared_error',
                  metrics=['mean_absolute_error'])
    return model
def build_model(emb_cid, emb_advid):

    inp1 = layers.Input(shape=(max_len, ))
    inp2 = layers.Input(shape=(max_len, ))

    emb1 = layers.Embedding(input_dim=emb_cid.shape[0],
                            output_dim=emb_cid.shape[1],
                            input_length=max_len,
                            weights=[emb_cid],
                            trainable=False)(inp1)
    emb2 = layers.Embedding(input_dim=emb_advid.shape[0],
                            output_dim=emb_advid.shape[1],
                            input_length=max_len,
                            weights=[emb_advid],
                            trainable=False)(inp2)

    sdrop = layers.SpatialDropout1D(rate=0.2)

    emb1 = sdrop(emb1)
    emb2 = sdrop(emb2)

    content = layers.Concatenate()([emb1, emb2])

    mha = MultiHeadAttention(head_num=16)(content)
    mha = layers.Dropout(0.01)(mha)
    mha = layers.Add()([content, mha])
    mha = LayerNormalization()(mha)
    mha = layers.Dropout(0.01)(mha)
    mha_ff = FeedForward(256)(mha)
    mha_out = layers.Add()([mha, mha_ff])
    mha_out = LayerNormalization()(mha_out)

    lstm = layers.Bidirectional(layers.LSTM(128,
                                            return_sequences=True))(mha_out)

    avg_pool = layers.GlobalAveragePooling1D()(lstm)
    max_pool = layers.GlobalMaxPool1D()(lstm)

    x = layers.Concatenate()([avg_pool, max_pool])

    x = layers.Dense(128, activation='relu')(x)
    x = layers.BatchNormalization()(x)

    x = layers.Dense(64, activation='relu')(x)
    x = layers.BatchNormalization()(x)

    x = layers.Dropout(0.1)(x)

    out = layers.Dense(10, activation='softmax')(x)
    model = keras.Model(inputs=[inp1, inp2], outputs=out)
    model.compile(loss='categorical_crossentropy',
                  optimizer=keras.optimizers.Adam(1e-3),
                  metrics=['accuracy'])

    return model
def create_cnn():
    input_layer = layers.Input((70,))
    embedding_layer = layers.Embedding(len(word_index)+1, 300, weights=[embedding_matrix], trainable=False)(input_layer)
    embedding_layer = layers.SpatialDropout1D(0.3)(embedding_layer)
    conv_layer = layers.Convolution1D(100, 3, activation='relu')(embedding_layer)
    pooling_layer = layers.GlobalMaxPool1D()(conv_layer)
    output_layer1 = layers.Dense(50, activation='relu')(pooling_layer)
    output_layer1 = layers.Dropout(0.25)(output_layer1)
    output_layer2 = layers.Dense(1, activation='sigmoid')(output_layer1)
    model = models.Model(inputs=input_layer, outputs=output_layer2)
    model.compile(optimizer=optimizers.Adam(), loss='binary_crossentropy')
    return model
Example #22
0
def multipleOutput(vocabulary_size, num_income_groups):
    """
    multiple output model
    :param vocabulary_size:
    :param num_income_groups:
    :return:
    """

    post_input = layers.Input(shape=(None, ), dtype='int32', name='posts')
    embedded_post = layers.Embedding(input_dim=256,
                                     output_dim=vocabulary_size)(post_input)
    # Conv1D layer
    x = layers.Conv1D(filters=128, kernel_size=5,
                      activation='relu')(embedded_post)
    x = layers.MaxPooling1D(pool_size=5)(x)
    x = layers.Conv1D(filters=256, kernel_size=5, activation='relu')(x)
    x = layers.Conv1D(filters=256, kernel_size=5, activation='relu')(x)
    x = layers.MaxPooling1D(pool_size=5)(x)
    x = layers.Conv1D(filters=256, kernel_size=5, activation='relu')(x)
    x = layers.Conv1D(filters=256, kernel_size=5, activation='relu')(x)
    x = layers.GlobalMaxPool1D()(x)

    # Dense layer
    # regression problem
    age_prediction = layers.Dense(units=1, name='age')(x)
    # category category problem
    income_prediction = layers.Dense(units=num_income_groups,
                                     activation='softmax',
                                     name='income')(x)
    # binary category
    gender_prediction = layers.Dense(units=1,
                                     activation='sigmoid',
                                     name='gender')(x)

    # model
    model = Model(
        inputs=post_input,
        outputs=[age_prediction, income_prediction, gender_prediction])

    model.compile(optimizer=RMSprop(lr=1e-5),
                  loss={
                      'age': 'mse',
                      'income': 'categorical_crossentropy',
                      'gender': 'binary_crossentropy'
                  },
                  loss_weights={
                      'age': 0.25,
                      'income': 1.,
                      'gender': 10.
                  })
    return model
Example #23
0
def create_model(num_filters, kernel_size, vocab_size, embedding_dim, maxlen):
    model = Sequential()
    model.add(layers.Embedding(vocab_size, embedding_dim, input_length=maxlen))
    model.add(layers.SpatialDropout1D(0.25))
    model.add(layers.Conv1D(num_filters, kernel_size, padding='same', activation='relu'))
    model.add(layers.AveragePooling1D())
    model.add(layers.GlobalMaxPool1D())
    model.add(layers.Dense(10, activation='relu')) 
    model.add(layers.Dropout(0.25))
    model.add(layers.Dense(1, activation='sigmoid'))
    model.compile(optimizer='adam',
              loss='binary_crossentropy',
              metrics=['accuracy'])
    return model
Example #24
0
def create_model_cnn(n_salida, n_oculto, em_input, em_dim, em_maxlen):
    from keras import layers
    model = Sequential()
    model.add(
        layers.Embedding(input_dim=em_input,
                         output_dim=em_dim,
                         input_length=em_maxlen))
    model.add(layers.GlobalMaxPool1D())
    model.add(layers.Dense(n_oculto, activation='relu'))
    model.add(layers.Dense(units=n_salida, activation='sigmoid'))
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Example #25
0
def get_baseline_convolutional_encoder(filters,
                                       embedding_dimension,
                                       input_shape=None,
                                       dropout=0.05):
    encoder = Sequential()

    # Initial conv
    if input_shape is None:
        # In this case we are using the encoder as part of a siamese network and the input shape will be determined
        # automatically based on the input shape of the siamese network
        encoder.add(
            layers.Conv1D(filters, 32, padding='same', activation='relu'))
    else:
        # In this case we are using the encoder to build a classifier network and the input shape must be defined
        encoder.add(
            layers.Conv1D(filters,
                          32,
                          padding='same',
                          activation='relu',
                          input_shape=input_shape))
    encoder.add(layers.BatchNormalization())
    encoder.add(layers.SpatialDropout1D(dropout))
    encoder.add(layers.MaxPool1D(4, 4))

    # Further convs
    encoder.add(
        layers.Conv1D(2 * filters, 3, padding='same', activation='relu'))
    encoder.add(layers.BatchNormalization())
    encoder.add(layers.SpatialDropout1D(dropout))
    encoder.add(layers.MaxPool1D())

    encoder.add(
        layers.Conv1D(3 * filters, 3, padding='same', activation='relu'))
    encoder.add(layers.BatchNormalization())
    encoder.add(layers.SpatialDropout1D(dropout))
    encoder.add(layers.MaxPool1D())

    encoder.add(
        layers.Conv1D(4 * filters, 3, padding='same', activation='relu'))
    encoder.add(layers.BatchNormalization())
    encoder.add(layers.SpatialDropout1D(dropout))
    encoder.add(layers.MaxPool1D())

    encoder.add(layers.GlobalMaxPool1D())

    encoder.add(layers.Dense(embedding_dimension))

    return encoder
Example #26
0
    def char_level_token_encoder(self):
        charset_size = self.parameters.get('charset_size')
        char_embedding_size = self.parameters.get('char_embedding_size')
        token_embedding_size = self.parameters.get('hidden_units_size')
        n_highway_layers = self.parameters.get('n_highway_layers')
        filters = self.parameters.get('cnn_filters')
        token_maxlen = self.parameters.get('token_maxlen')

        # Input Layer, word characters (samples, words, character_indices)
        inputs = layers.Input(shape=(
            None,
            token_maxlen,
        ), dtype='int32')
        # Embed characters (samples, words, characters, character embedding)
        embedding = layers.Embedding(input_dim=charset_size,
                                     output_dim=char_embedding_size)(inputs)

        token_embeds = []
        # Apply multi-filter 2D convolutions + 1D MaxPooling + tanh
        for (window_size, filters_size) in filters:
            convs = layers.Conv2D(filters=filters_size,
                                  kernel_size=(window_size,
                                               char_embedding_size),
                                  strides=(1, 1),
                                  padding='same')(embedding)
            convs = layers.TimeDistributed(layers.GlobalMaxPool1D())(convs)
            convs = layers.Activation(activation='tanh')(convs)
            convs = Camouflage(mask_value=0)(inputs=[convs, inputs])
            token_embeds.append(convs)
        token_embeds = layers.concatenate(token_embeds)

        # Apply highways networks
        for i in range(n_highway_layers):
            token_embeds = layers.TimeDistributed(HighWay())(token_embeds)
            token_embeds = Camouflage(mask_value=0)(
                input=[token_embeds, inputs])

        # Project to token embedding dimensionality
        token_embeds = layers.TimeDistributed(
            layers.Dense(units=token_embedding_size,
                         activation='linear'))(token_embeds)
        token_embeds = Camouflage(mask_value=0)(input=[token_embeds, inputs])

        token_encoder = models.Model(inputs=inputs,
                                     outputs=token_embeds,
                                     name='token_encoding')
        return token_encoder
Example #27
0
 def create_model(self, num_filters, kernel_size, vocab_size, embedding_dim,
                  maxlen):
     #creates a CNN model with the specified params, returns the model oect itself
     model = Sequential()
     model.add(
         layers.Embedding(input_dim=vocab_size,
                          output_dim=embedding_dim,
                          input_length=maxlen))
     model.add(layers.Conv1D(num_filters, kernel_size, activation='relu'))
     model.add(layers.GlobalMaxPool1D())
     model.add(layers.Dense(10, activation='relu'))
     model.add(layers.Dense(1, activation='sigmoid'))
     model.compile(optimizer='adam',
                   loss='binary_crossentropy',
                   metrics=['accuracy'])
     model.summary()
     return model
Example #28
0
 def createModel2D(self, train_shape, output_count):
     model = Sequential()
     model.add(
         Dense(self.count_first_layer,
               input_shape=(
                   train_shape[0],
                   train_shape[1],
               ),
               activation="relu"))
     model.add(Dense(self.count_second_layer, activation="relu"))
     model.add(layers.GlobalMaxPool1D())
     model.add(Dense(self.count_third_layer, activation=tf.nn.leaky_relu))
     model.add(Dense(output_count, activation="softmax"))
     model.compile(loss='categorical_crossentropy',
                   metrics=['accuracy'],
                   optimizer='adam')
     return model
Example #29
0
    def train(self, X_train, y_train, X_test, y_test, embedding_matrix,
              vocab_size):
        pool = []
        inputs = []
        for kernel_size, n_filters in zip(self.kernel_sizes, self.n_filters):
            input_shape = (self.text_length, self.embedding_dim)
            x = Input(shape=(self.text_length, ))
            embedding = layers.Embedding(vocab_size,
                                         self.embedding_dim,
                                         input_length=self.text_length)(x)
            C1D = layers.Conv1D(n_filters,
                                kernel_size,
                                activation='relu',
                                input_shape=(self.text_length,
                                             self.embedding_dim))(embedding)
            MX1D = layers.GlobalMaxPool1D()(C1D)
            pool.append(MX1D)
            inputs.append(x)
        merged = pool[0]
        if len(self.kernel_sizes) > 1:
            merged = concatenate(pool)

        if len(self.hidden_layers) > 0:
            dense = layers.Dense(self.hidden_layers[0],
                                 activation='relu')(merged)
            for n_unit in self.hidden_layers[1:]:
                dense = layers.Dense(n_unit, activation='relu')(dense)
            #dense2 = layers.Dense(10, activation='relu')(dense1)
            outputs = layers.Dense(self.n_class, activation='softmax')(dense)
        else:
            outputs = layers.Dense(self.n_class, activation='softmax')(merged)
        self.model = Model(inputs=inputs, outputs=outputs)
        sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.1, nesterov=True)
        self.model.compile(loss='categorical_crossentropy',
                           optimizer='adam',
                           metrics=['accuracy'])
        self.model.summary()
        history = self.model.fit(
            [X_train] * len(self.kernel_sizes),
            y_train,
            epochs=self.epochs,
            verbose=True,
            validation_data=([X_test] * len(self.kernel_sizes), y_test),
            batch_size=self.batch_size)
        return self.model
Example #30
0
def build_keras_model_mv03r00(emb_dims, vocab_size, max_len, emb_matrix):
    ip = kl.Input(shape=(max_len, ))
    x = kl.Embedding(vocab_size,
                     emb_dims,
                     weights=[emb_matrix],
                     trainable=True,
                     name='X_emb')(ip)
    x = kl.SpatialDropout1D(0.5)(x)
    x = kl.Bidirectional(kl.CuDNNGRU(200, return_sequences=True))(x)
    x = kl.Bidirectional(kl.CuDNNGRU(200, return_sequences=True))(x)
    x = kl.GlobalMaxPool1D()(x)
    x = kl.Dense(100, activation="relu")(x)
    x = kl.Dropout(0.5)(x)
    op = kl.Dense(6, activation="sigmoid")(x)

    model = km.Model(inputs=[ip], outputs=op)

    return model