Example #1
0
def D3GenerateModel(n_filter=16, number_of_class=2, input_shape=(16,144,144,1),activation_last='sigmoid', metrics=['mse', 'acc'],loss='mse', optimizer='adam',dropout=0.5, init='glorot_uniform'):
    filter_size =n_filter
    model = Sequential()
    model.add(layers.Conv3D(filters=filter_size, input_shape=input_shape,  kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1, 2,2), padding='valid'))
    model.add(layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1,1,1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*4, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1, 2,2), padding='valid'))
    model.add(layers.Conv3D(filters=filter_size*4, kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*8, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1,2, 2), padding='same'))
    model.add(layers.Conv3D(filters=filter_size*16, kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='same', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*32, kernel_size=(3,3,3), strides=(2,2, 2), 
                                padding='same', activation='selu'))
    
    #model.add(layers.MaxPooling2D((2, 2), padding='valid'))
    model.add(layers.GlobalMaxPooling3D())
    #Encoder
    model.add(layers.Dense(512, activation='selu'))
    model.add(keras.layers.Dropout(0.5))
    model.add(layers.Dense(256, activation='selu'))
    model.add(layers.Dense(2, activation='softmax'))#, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)))
    model.summary()
    model.compile(optimizer=keras.optimizers.adam(lr=2e-6),loss='categorical_crossentropy', metrics=metrics)
    return model
Example #2
0
def design_dnn(nb_features, input_shape, nb_levels, conv_size, nb_labels,
               feat_mult=1,
               pool_size=2,
               padding='same',
               activation='elu',
               final_layer='dense-sigmoid',
               conv_dropout=0,
               conv_maxnorm=0,
               nb_input_features=1,
               batch_norm=False,
               name=None,
               prefix=None,
               use_strided_convolution_maxpool=True,
               nb_conv_per_level=2):
    """
    "deep" cnn with dense or global max pooling layer @ end...

    Could use sequential...
    """

    model_name = name
    if model_name is None:
        model_name = 'model_1'
    if prefix is None:
        prefix = model_name

    ndims = len(input_shape)
    input_shape = tuple(input_shape)

    convL = getattr(KL, 'Conv%dD' % ndims)
    maxpool = KL.MaxPooling3D if len(input_shape) == 3 else KL.MaxPooling2D
    if isinstance(pool_size, int):
        pool_size = (pool_size,) * ndims

    # kwargs for the convolution layer
    conv_kwargs = {'padding': padding, 'activation': activation}
    if conv_maxnorm > 0:
        conv_kwargs['kernel_constraint'] = maxnorm(conv_maxnorm)

    # initialize a dictionary
    enc_tensors = {}

    # first layer: input
    name = '%s_input' % prefix
    enc_tensors[name] = KL.Input(shape=input_shape + (nb_input_features,), name=name)
    last_tensor = enc_tensors[name]

    # down arm:
    # add nb_levels of conv + ReLu + conv + ReLu. Pool after each of first nb_levels - 1 layers
    for level in range(nb_levels):
        for conv in range(nb_conv_per_level):
            if conv_dropout > 0:
                name = '%s_dropout_%d_%d' % (prefix, level, conv)
                enc_tensors[name] = KL.Dropout(conv_dropout)(last_tensor)
                last_tensor = enc_tensors[name]

            name = '%s_conv_%d_%d' % (prefix, level, conv)
            nb_lvl_feats = np.round(nb_features*feat_mult**level).astype(int)
            enc_tensors[name] = convL(nb_lvl_feats, conv_size, **conv_kwargs, name=name)(last_tensor)
            last_tensor = enc_tensors[name]

        # max pool
        if use_strided_convolution_maxpool:
            name = '%s_strided_conv_%d' % (prefix, level)
            enc_tensors[name] = convL(nb_lvl_feats, pool_size, **conv_kwargs, name=name)(last_tensor)
            last_tensor = enc_tensors[name]
        else:
            name = '%s_maxpool_%d' % (prefix, level)
            enc_tensors[name] = maxpool(pool_size=pool_size, name=name, padding=padding)(last_tensor)
            last_tensor = enc_tensors[name]

    # dense layer
    if final_layer == 'dense-sigmoid':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(1, name=name, activation="sigmoid")(last_tensor)

    elif final_layer == 'dense-tanh':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(1, name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # Omittting BatchNorm for now, it seems to have a cpu vs gpu problem
        # https://github.com/tensorflow/tensorflow/pull/8906
        # https://github.com/fchollet/keras/issues/5802
        # name = '%s_%s_bn' % prefix
        # enc_tensors[name] = KL.BatchNormalization(axis=batch_norm, name=name)(last_tensor)
        # last_tensor = enc_tensors[name]

        name = '%s_%s_tanh' % prefix
        enc_tensors[name] = KL.Activation(activation="tanh", name=name)(last_tensor)

    elif final_layer == 'dense-softmax':

        name = "%s_flatten" % prefix
        enc_tensors[name] = KL.Flatten(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_dense' % prefix
        enc_tensors[name] = KL.Dense(nb_labels, name=name, activation="softmax")(last_tensor)

    # global max pooling layer
    elif final_layer == 'myglobalmaxpooling':

        name = '%s_batch_norm' % prefix
        enc_tensors[name] = KL.BatchNormalization(axis=batch_norm, name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool' % prefix
        enc_tensors[name] = KL.Lambda(_global_max_nd, name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool_reshape' % prefix
        enc_tensors[name] = KL.Reshape((1, 1), name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # cannot do activation in lambda layer. Could code inside, but will do extra lyaer
        name = '%s_global_max_pool_sigmoid' % prefix
        enc_tensors[name] = KL.Conv1D(1, 1, name=name, activation="sigmoid", use_bias=True)(last_tensor)

    elif final_layer == 'globalmaxpooling':

        name = '%s_conv_to_featmaps' % prefix
        enc_tensors[name] = KL.Conv3D(2, 1, name=name, activation="relu")(last_tensor)
        last_tensor = enc_tensors[name]

        name = '%s_global_max_pool' % prefix
        enc_tensors[name] = KL.GlobalMaxPooling3D(name=name)(last_tensor)
        last_tensor = enc_tensors[name]

        # cannot do activation in lambda layer. Could code inside, but will do extra lyaer
        name = '%s_global_max_pool_softmax' % prefix
        enc_tensors[name] = KL.Activation('softmax', name=name)(last_tensor)

    last_tensor = enc_tensors[name]

    # create the model
    model = Model(inputs=[enc_tensors['%s_input' % prefix]], outputs=[last_tensor], name=model_name)
    return model
def create_vgg16_3d(dense=False,
                    batch_norm=True,
                    weights=None,
                    input_shape=(260, 100, 15, 1)):
    """
    Creates slightly modified VGG16 model, ported to 3d with trainable BatchNormalization
    """
    def create_conv(filter, kernel_size, name):
        def conv_wrapper(inp):
            x = layers.Conv3D(filter, kernel_size, padding='same',
                              name=name)(inp)
            if batch_norm:
                x = layers.BatchNormalization()(x)
            x = layers.Activation('relu')(x)
            return x

        return conv_wrapper

    img_input = layers.Input(shape=input_shape, name='input')

    # block 1
    x = create_conv(8, (3, 3, 3), name='block1_conv1')(img_input)
    x = create_conv(8, (3, 3, 3), name='block1_conv2')(x)
    x = layers.MaxPooling3D((2, 2, 2), strides=(2, 2, 2),
                            name='block1_pool')(x)

    # block 2
    x = create_conv(16, (3, 3, 3), name='block2_conv1')(x)
    x = create_conv(16, (3, 3, 3), name='block2_conv2')(x)
    x = layers.MaxPooling3D((2, 2, 2), strides=(2, 2, 2),
                            name='block2_pool')(x)

    # block 3
    x = create_conv(32, (3, 3, 3), name='block3_conv1')(x)
    x = create_conv(32, (3, 3, 3), name='block3_conv2')(x)
    x = create_conv(32, (3, 3, 3), name='block3_conv3')(x)
    x = layers.MaxPooling3D((2, 2, 2), strides=(2, 2, 2),
                            name='block3_pool')(x)

    # block 4
    x = create_conv(32, (3, 3, 3), name='block4_conv1')(x)
    x = create_conv(32, (3, 3, 3), name='block4_conv2')(x)
    x = create_conv(32, (3, 3, 3), name='block4_conv3')(x)
    # delete MaxPooling to allow for 5th block

    # block 5
    x = create_conv(64, (3, 3, 3), name='block5_conv1')(x)
    x = create_conv(64, (3, 3, 3), name='block5_conv2')(x)
    x = create_conv(64, (3, 3, 3), name='block5_conv3')(x)

    if dense:
        x = layers.Flatten()(x)
        x = layers.Dense(4096)(x)
        x = layers.BatchNormalization()(x)
        x = layers.Dense(2048)(x)
        x = layers.BatchNormalization()(x)
        x = layers.Dense(1)(x)
    else:
        x = layers.GlobalMaxPooling3D()(x)

    model = models.Model(img_input, x, name='vgg16_3d')

    if weights is not None:
        model.load_weights(weights, by_name=True)
    return model
def InceptionResNetV2R2(include_top=True,
                        weights='imagenet',
                        input_tensor=None,
                        input_shape=None,
                        pooling=None,
                        classes=1000,
                        **kwargs):
    """Instantiates the Inception-ResNet v2 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is `False` (otherwise the input shape
            has to be `(299, 299, 3)` (with `'channels_last'` data format)
            or `(3, 299, 299)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 75.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the last convolutional block.
            - `'avg'` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `'max'` means that global max pooling will be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is `True`, and
            if no `weights` argument is specified.

    # Returns
        A Keras `Model` instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    #    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)
    from keras import backend, layers, models
    from keras import utils as keras_utils

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
#    input_shape = _obtain_input_shape(
#        input_shape,
#        default_size=299,
#        min_size=75,
#        data_format=backend.image_data_format(),
#        require_flatten=include_top,
#        weights=weights)
    input_shape = input_shape  #(96, 120, 86, 2)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Stem block output: 21 x 27 x 19 x 256
    x = conv3d_bn(img_input, 48, 3, padding='valid')
    x = conv3d_bn(x, 64, 3)
    x1 = layers.MaxPooling3D(3, strides=2)(x)
    x2 = conv3d_bn(x, 64, 3, 2, padding='valid')
    channel_axis = 1 if backend.image_data_format() == 'channels_first' else 4
    x = layers.Concatenate(axis=channel_axis)([x1, x2])  #nKernal = 128
    x1 = conv3d_bn(x, 64, 1)
    x1 = conv3d_bn(x1, 96, 3, padding='valid')
    x2 = conv3d_bn(x, 64, 1)
    x2 = conv3d_bn(x2, 64, [1, 7, 1])
    x2 = conv3d_bn(x2, 64, [1, 1, 7])
    x2 = conv3d_bn(x2, 64, [7, 1, 1])
    x2 = conv3d_bn(x2, 96, 3, padding='valid')
    x = layers.Concatenate(axis=channel_axis)([x1, x2])  #nKernal = 192
    x1 = conv3d_bn(x, 128, 3, 2, padding='valid')
    x2 = layers.MaxPooling3D(3, strides=2, padding='valid', name='StemEnd')(x)
    x = layers.Concatenate(axis=channel_axis)([x1, x2])  #nKernal = 320

    # 2x block35 (Inception-ResNet-A block) output: 21 x 27 x 19 x 320
    for block_idx in range(1, 3):
        x = inception_resnet_block(
            x,
            scale=0.17,
            #                                   scale=0.1, # reduce to 0.1 to avoid instability
            block_type='block35',
            block_idx=block_idx)

    # Mixed 6a (Reduction-A block) output: 10 x 13 x 9 x 640
    branch_0 = conv3d_bn(x, 160, 3, strides=2, padding='valid')
    branch_1 = conv3d_bn(x, 128, 1)
    branch_1 = conv3d_bn(branch_1, 128, 3)
    branch_1 = conv3d_bn(branch_1, 160, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling3D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_pool]
    channel_axis = 1 if backend.image_data_format() == 'channels_first' else 4
    x = layers.Concatenate(axis=channel_axis, name='mixed_6a')(branches)

    # 4x block17 (Inception-ResNet-B block) output: 10 x 13 x 9 x 640
    for block_idx in range(1, 5):
        x = inception_resnet_block(x,
                                   scale=0.1,
                                   block_type='block17',
                                   block_idx=block_idx)

    # Mixed 7a (Reduction-B block): 4 x 6 x 4 x 1408
    branch_0 = conv3d_bn(x, 192, 1)
    branch_0 = conv3d_bn(branch_0, 224, 3, strides=2, padding='valid')
    branch_1 = conv3d_bn(x, 192, 1)
    branch_1 = conv3d_bn(branch_1, 288, 3, strides=2, padding='valid')
    branch_2 = conv3d_bn(x, 192, 1)
    branch_2 = conv3d_bn(branch_2, 224, 3)
    branch_2 = conv3d_bn(branch_2, 256, 3, strides=2, padding='valid')
    branch_pool = layers.MaxPooling3D(3, strides=2, padding='valid')(x)
    branches = [branch_0, branch_1, branch_2, branch_pool]
    x = layers.Concatenate(axis=channel_axis, name='mixed_7a')(branches)

    # 2x block8 (Inception-ResNet-C block): 4 x 6 x 4 x 1408
    for block_idx in range(1, 2):
        x = inception_resnet_block(
            x,
            scale=0.2,
            #                                   scale=0.1, # reduce to 0.1 to avoid instability
            block_type='block8',
            block_idx=block_idx)
    x = inception_resnet_block(x,
                               scale=1.,
                               activation=None,
                               block_type='block8',
                               block_idx=5)

    # Final convolution block: 4 x 6 x 4 x 512
    x = conv3d_bn(x, 512, 1, name='conv_7b')

    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling3D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling3D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling3D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name='inception_resnet_v2_3D')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5'
            weights_path = keras_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='e693bd0210a403b3192acc6073ad2e96')
        else:
            fname = ('inception_resnet_v2_weights_'
                     'tf_dim_ordering_tf_kernels_notop.h5')
            weights_path = keras_utils.get_file(
                fname,
                BASE_WEIGHT_URL + fname,
                cache_subdir='models',
                file_hash='d19885ff4a710c122648d3b5c3b684e4')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
def MobileNet(input_shape=None,
              alpha=1.0,
              depth_multiplier=1,
              dropout=1e-3,
              include_top=True,
              weights='imagenet',
              input_tensor=None,
              pooling=None,
              classes=1000,
              **kwargs):
    """Instantiates the MobileNet architecture.

    # Arguments
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)`
            (with `channels_last` data format)
            or (3, 224, 224) (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        alpha: controls the width of the network. This is known as the
            width multiplier in the MobileNet paper.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        depth_multiplier: depth multiplier for depthwise convolution. This
            is called the resolution multiplier in the MobileNet paper.
        dropout: dropout rate
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of
            `layers.Input()`)
            to use as image input for the model.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model
                will be the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a
                2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
        RuntimeError: If attempting to run this model with a
            backend that does not support separable convolutions.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    if input_shape is None:
        default_size = 224
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if depth_multiplier != 1:
            raise ValueError('If imagenet weights are being loaded, '
                             'depth multiplier must be 1')

        if alpha not in [0.25, 0.50, 0.75, 1.0]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of'
                             '`0.25`, `0.50`, `0.75` or `1.0` only.')

        if rows != cols or rows not in [128, 160, 192, 224]:
            rows = 224
            warnings.warn('`input_shape` is undefined or non-square, '
                          'or `rows` is not in [128, 160, 192, 224]. '
                          'Weights for input shape (224, 224) will be'
                          ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = _conv_block(img_input, 32, alpha, strides=(2, 2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)

    x = _depthwise_conv_block(x,
                              128,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2, 2),
                              block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)

    x = _depthwise_conv_block(x,
                              256,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2, 2),
                              block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)

    x = _depthwise_conv_block(x,
                              512,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2, 2),
                              block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)

    x = _depthwise_conv_block(x,
                              1024,
                              alpha,
                              depth_multiplier,
                              strides=(2, 2, 2),
                              block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)

    if include_top:
        if backend.image_data_format() == 'channels_first':
            shape = (int(1024 * alpha), 1, 1, 1)
        else:
            shape = (1, 1, 1, int(1024 * alpha))

        x = layers.GlobalAveragePooling3D()(x)
        x = layers.Reshape(shape, name='reshape_1')(x)
        x = layers.Dropout(dropout, name='dropout')(x)
        x = layers.Conv3D(classes, (1, 1, 1),
                          padding='same',
                          name='conv_preds')(x)
        x = layers.Reshape((classes, ), name='reshape_2')(x)
        x = layers.Activation('softmax', name='act_softmax')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling3D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling3D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs, x, name='mobilenet_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if alpha == 1.0:
            alpha_text = '1_0'
        elif alpha == 0.75:
            alpha_text = '7_5'
        elif alpha == 0.50:
            alpha_text = '5_0'
        else:
            alpha_text = '2_5'

        if include_top:
            model_name = 'mobilenet_%s_%d_tf.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = keras_utils.get_file(model_name,
                                                weight_path,
                                                cache_subdir='models')
        else:
            model_name = 'mobilenet_%s_%d_tf_no_top.h5' % (alpha_text, rows)
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = keras_utils.get_file(model_name,
                                                weight_path,
                                                cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
def MobileNetV2(input_shape=None,
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                pooling=None,
                classes=1000,
                **kwargs):
    """Instantiates the MobileNetV2 architecture.

    # Arguments
        input_shape: optional shape tuple, to be specified if you would
            like to use a model with an input img resolution that is not
            (224, 224, 3).
            It should have exactly 3 inputs channels (224, 224, 3).
            You can also omit this option if you would like
            to infer input_shape from an input_tensor.
            If you choose to include both input_tensor and input_shape then
            input_shape will be used if they match, if the shapes
            do not match then we will throw an error.
            E.g. `(160, 160, 3)` would be one valid value.
        alpha: controls the width of the network. This is known as the
        width multiplier in the MobileNetV2 paper, but the name is kept for
        consistency with MobileNetV1 in Keras.
            - If `alpha` < 1.0, proportionally decreases the number
                of filters in each layer.
            - If `alpha` > 1.0, proportionally increases the number
                of filters in each layer.
            - If `alpha` = 1, default number of filters from the paper
                 are used at each layer.
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of
            `layers.Input()`)
            to use as image input for the model.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model
                will be the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a
                2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape or invalid alpha, rows when
            weights='imagenet'
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    keras_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError('input_tensor: ', input_tensor,
                                 'is not type input_tensor')
        if is_input_t_tensor:
            if backend.image_data_format == 'channels_first':
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
        else:
            raise ValueError('input_tensor specified: ', input_tensor,
                             'is not a keras tensor')

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                             type(input_tensor), 'which is not a valid type')

        if input_shape is None and not backend.is_keras_tensor(input_tensor):
            default_size = 224
        elif input_shape is None and backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == 'channels_first':
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]

            if rows == cols and rows in [96, 128, 160, 192, 224]:
                default_size = rows
            else:
                default_size = 224

    # If input_shape is None and no input_tensor
    elif input_shape is None:
        default_size = 224

    # If input_shape is not None, assume default size
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [96, 128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of `0.35`, `0.50`, `0.75`, '
                             '`1.0`, `1.3` or `1.4` only.')

        if rows != cols or rows not in [96, 128, 160, 192, 224]:
            rows = 224
            warnings.warn('`input_shape` is undefined or non-square, '
                          'or `rows` is not in [96, 128, 160, 192, 224].'
                          ' Weights for input shape (224, 224) will be'
                          ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    first_block_filters = _make_divisible(32 * alpha, 8)
    x = layers.ZeroPadding3D(padding=correct_pad(backend, img_input, 3),
                             name='Conv1_pad')(img_input)
    x = layers.Conv3D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2, 2),
                      padding='valid',
                      use_bias=False,
                      name='Conv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = layers.ReLU(6., name='Conv1_relu')(x)

    x = _inverted_res_block(x,
                            filters=16,
                            alpha=alpha,
                            stride=1,
                            expansion=1,
                            block_id=0)

    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=1)
    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=2)

    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=3)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=4)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=5)

    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=6)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=7)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=8)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=9)

    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=10)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=11)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=12)

    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=13)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=14)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=15)

    x = _inverted_res_block(x,
                            filters=320,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = layers.Conv3D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = layers.ReLU(6., name='out_relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling3D()(x)
        x = layers.Dense(classes,
                         activation='softmax',
                         use_bias=True,
                         name='Logits')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling3D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling3D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = models.Model(inputs,
                         x,
                         name='mobilenetv2_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = keras_utils.get_file(model_name,
                                                weight_path,
                                                cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = keras_utils.get_file(model_name,
                                                weight_path,
                                                cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model