Example #1
0
 def create_model(self, hyper_parameters):
     """
         构建神经网络
     :param hyper_parameters:json,  hyper parameters of network
     :return: tensor, moedl
     """
     super().create_model(hyper_parameters)
     x = self.word_embedding.output
     # x = Reshape((self.len_max, self.embed_size, 1))(embedding_output) # (None, 50, 30, 1)
     # cnn + pool
     for char_cnn_size in self.char_cnn_layers:
         x = Convolution1D(filters = char_cnn_size[0],
                           kernel_size = char_cnn_size[1],)(x)
         x = ThresholdedReLU(self.threshold)(x)
         if char_cnn_size[2] != -1:
             x = MaxPooling1D(pool_size = char_cnn_size[2],
                              strides = 1)(x)
     x = Flatten()(x)
     # full-connect
     for full in self.full_connect_layers:
         x = Dense(units=full,)(x)
         x = ThresholdedReLU(self.threshold)(x)
         x = Dropout(self.dropout)(x)
     output = Dense(units=self.label, activation=self.activate_classify)(x)
     self.model = Model(inputs=self.word_embedding.input, outputs=output)
     self.model.summary(120)
Example #2
0
    def _build_model(self):
        print "Building the model..."

        # building the model
        # Input layer
        inputs = Input(shape=(self.l0, ), name='sent_input', dtype='int64')

        # Embedding layer
        x = Embedding(self.alphabet_size + 1,
                      self.embedding_size,
                      input_length=self.l0)(inputs)

        # Convolution layers
        for cl in self.conv_layers:
            x = Convolution1D(cl[0], cl[1])(x)
            x = ThresholdedReLU(self.th)(x)
            if not cl[2] is None:
                x = MaxPooling1D(cl[2])(x)

        x = Flatten()(x)

        # Fully connected layers
        for idx, fl in enumerate(self.fully_layers):
            x = Dense(fl, name="output" + str(idx))(x)
            x = ThresholdedReLU(self.th)(x)
            x = Dropout(self.dropout_p)(x)

        predictions = Dense(self.no_of_classes, activation='softmax')(x)
        self.model = Model(input=inputs, output=predictions)
        optimizer = Adam()
        self.model.compile(optimizer=optimizer,
                           loss='categorical_crossentropy')
        print "Built"
Example #3
0
def define_model_2(conv_layers,
                   fully_connected_layers,
                   threshold=1e-6,
                   num_classes=2,
                   optimizer='adam',
                   dropout_proba=0.5,
                   alphabet_size=ALPHABET_SIZE,
                   embedding_size=32,
                   input_size=MAX_INPUT_LEN,
                   loss='categorical_crossentropy'):
    """
    Based on https://arxiv.org/abs/1509.01626
    """
    inputs = Input(shape=(input_size, ), name='input_layer', dtype='int64')
    x = Embedding(alphabet_size + 1, embedding_size,
                  input_length=input_size)(inputs)
    for num_filters, filter_width, max_pool in conv_layers:
        x = Convolution1D(filters=num_filters, kernel_size=filter_width)(x)
        x = ThresholdedReLU(threshold)(x)
        if max_pool != -1:
            x = MaxPooling1D(max_pool)(x)

    x = Flatten()(x)
    for units in fully_connected_layers:
        x = Dense(units)(x)
        x = ThresholdedReLU(threshold)(x)
        x = Dropout(dropout_proba)(x)

    predictions = Dense(num_classes, activation='softmax')(x)
    model = Model(inputs=inputs, outputs=predictions)
    model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
    return model
Example #4
0
def create_model(input_size, alphabet_size, conv_layers, fc_layers,
                 num_of_classes):
    # Input layer
    inputs = Input(shape=(input_size, ), name='sent_input', dtype='int64')

    # Embedding layers
    x = Embedding(len(alphabet) + 1, 128, input_length=input_size)(inputs)

    # 1D Convolutional layers
    for cl in conv_layers:
        x = Convolution1D(cl[0], cl[1])(x)
        x = ThresholdedReLU(1e-6)(x)
        if cl[2] != -1:
            x = MaxPooling1D(cl[2])(x)

    x = Flatten()(x)

    # Fully Connected layers
    for fl in fc_layers:
        x = Dense(fl)(x)
        x = ThresholdedReLU(1e-6)(x)
        x = Dropout(0.5)(x)

    # Output layer
    predictions = Dense(num_of_classes, activation='softmax')(x)
    return inputs, predictions
Example #5
0
    def _build_model(self):
        # Input layer
        inputs = Input(shape=(self.input_size, ), dtype='int64')
        # Embedding layers
        x = Embedding(self.alphabet_size + 1,
                      self.embedding_size,
                      input_length=self.input_size)(inputs)

        # Convolution layers
        for cl in self.conv_layers:
            x = Convolution1D(cl[0], cl[1])(x)
            x = ThresholdedReLU(self.threshold)(x)
            if cl[2] != -1:
                x = MaxPooling1D(cl[2])(x)
        x = Flatten()(x)

        # Fully connected layers
        for fl in self.fully_connected_layers:
            x = Dense(fl)(x)
            x = ThresholdedReLU(self.threshold)(x)
            x = Dropout(self.dropout_p)(x)

        # Output layer
        predictions = Dense(self.n_classes, activation='softmax')(x)

        # Build and compile model
        print("Compiling model...")
        model = Model(inputs=inputs, outputs=predictions)
        model.compile(optimizer=self.optimizer,
                      loss=self.loss,
                      metrics=['accuracy'])
        self.model = model
        self.model.summary()
Example #6
0
    def _build_model(self):
        """
        Build and compile the Character Level CNN model

        Returns: None

        """
        # Input layer
        inputs = Input(shape=(self.input_size, ),
                       name='sent_input',
                       dtype='int64')
        # Embedding layers
        x = Embedding(self.alphabet_size + 1,
                      self.embedding_size,
                      input_length=self.input_size)(inputs)
        # Convolution layers
        for cl in self.conv_layers:
            x = Convolution1D(cl[0], cl[1])(x)
            x = ThresholdedReLU(self.threshold)(x)
            if cl[2] != -1:
                x = MaxPooling1D(cl[2])(x)
        x = Flatten()(x)
        # Fully connected layers
        for fl in self.fully_connected_layers:
            x = Dense(fl)(x)
            x = ThresholdedReLU(self.threshold)(x)
            x = Dropout(self.dropout_p)(x)
        # Output layer
        predictions = Dense(1, activation='sigmoid')(x)
        # Build and compile model
        model = Model(inputs=inputs, outputs=predictions)
        self.model = model
        return self.model
Example #7
0
def average_dice_coef(y_true, y_pred):
    y_pred = ThresholdedReLU(0.5)(y_pred)
    loss = 0
    label_length = y_pred.get_shape().as_list()[-1]
    for num_label in range(label_length):
        y_true_f = K.flatten(y_true[..., num_label])
        y_pred_f = K.flatten(y_pred[..., num_label])
        intersection = K.sum(y_true_f * y_pred_f)
        loss += (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return loss / label_length  # 1>= loss >0
 def KQV15(columns):
     model = Sequential()
     model.add(
         Dense(int(columns / 1.5), input_dim=columns, activation='relu'))
     model.add(ThresholdedReLU())
     model.add(Dense(int(columns / 2), activation='relu'))
     model.add(ThresholdedReLU())
     model.add(Dense(int(columns / 5), activation='relu'))
     model.add(Dense(1))
     model.compile(loss="mean_squared_error",
                   optimizer=keras.optimizers.Adadelta(),
                   metrics=[tef.max_error, tef.mean_diff])
     return model
Example #9
0
    def _build_model(self):
        """
        Build and compile the Character Level CNN model

        Returns: None

        """
        # Input first layer
        char_inputs = Input(shape=(self.input_size, ),
                            name='sent_char_input',
                            dtype='int64')
        # Input second layer
        word_inputs = Input(shape=(500, 200),
                            name='sent_word_input',
                            dtype='float')
        # Embedding first layers
        y = Embedding(self.alphabet_size + 1,
                      self.embedding_size,
                      input_length=self.input_size)(char_inputs)
        # Concat two layers
        x = Concatenate(axis=1)([y, word_inputs])
        # Convolution layers
        for cl in self.conv_layers:
            x = Convolution1D(cl[0], cl[1])(x)
            x = ThresholdedReLU(self.threshold)(x)
            if cl[2] != -1:
                x = MaxPooling1D(cl[2])(x)
        x = LSTM(256,
                 dropout_W=0.2,
                 dropout_U=0.2,
                 input_shape=(3500, 200),
                 return_sequences=True)(x)
        x = Flatten()(x)
        # Fully connected layers
        for fl in self.fully_connected_layers:
            x = Dense(fl)(x)
            x = ThresholdedReLU(self.threshold)(x)
            x = Dropout(self.dropout_p)(x)
        # Output layer
        predictions = Dense(self.num_of_classes, activation='softmax')(x)
        # Build and compile model
        model = Model(inputs=[char_inputs, word_inputs], outputs=predictions)
        model.compile(optimizer=self.optimizer,
                      loss=self.loss,
                      metrics=['accuracy'])
        self.model = model
        print("CharCNNZhang model built: ")
        self.model.summary()
Example #10
0
    def create_final_block() -> None:
        global prev_layer

        activation = get_activation(config['final_activation'])

        l_name = "CONV_FINAL"
        conv = Conv3D(filters=1,
                      kernel_size=config['final_kernel_size'],
                      activation=activation,
                      padding=config['padding_mode'],
                      kernel_initializer=config['final_kernel_initializer'],
                      kernel_regularizer=None,
                      name=l_name)(prev_layer)
        record_layer(l_name, conv)

        if activation == 'linear':
            l_name = l_name + "_A"
            conv = config['final_activation'](name=l_name)(prev_layer)
            record_layer(l_name, conv)

        if config['labels'] > 1:
            # TODO: Allow for multiple output labels
            pass

        if config['theta_cutoff'] is not None:
            l_name = "OUT"
            out = ThresholdedReLU(theta=config['theta_cutoff'],
                                  name=l_name)(prev_layer)
            record_layer(l_name, out)
Example #11
0
def generate_embeddings_hard_attetion(config, incoming_layer):
    if config['bidirectional_attention']:
        gru = Bidirectional(
            GRU(config['gru_units'],
                return_sequences=True,
                dropout=config['gru_dropout'],
                recurrent_dropout=config['recurrent_dropout']))(incoming_layer)
    else:
        gru = GRU(
            config['gru_units'],
            return_sequences=True,
            dropout=config['gru_dropout'],
            recurrent_dropout=config['recurrent_dropout'])(incoming_layer)

    dense_att_1 = TimeDistributed(
        Dense(config['gru_units'], name='dense_att_1'))(gru)
    att_1_act = ThresholdedReLU(theta=0.8)(dense_att_1)
    # total units = 1 * INPUT_ACTIONS
    dense_att_2 = TimeDistributed(Dense(1))(att_1_act)
    # to undo the time distribution and have 1 value for each action
    reshape_distributed = Reshape((config['max_phrase_length'], ))(dense_att_2)
    attention = Activation('softmax')(reshape_distributed)
    # so we can multiply it with embeddings
    reshape_att = Reshape((config['max_phrase_length'], 1),
                          name='reshape_att')(attention)
    # apply the attention to the embeddings
    apply_att = Multiply()([incoming_layer, reshape_att])
    return apply_att
Example #12
0
def build_model():
    model = Sequential()
    model.add(Embedding(128, 128, input_length = 75))
    model.add(Conv1D(filters=128, kernel_size=3, padding='same', strides=1))
    model.add(ThresholdedReLU(1e-6))
    model.add(MaxPooling1D(pool_size=2, padding='same'))
    model.add(Conv1D(filters=128, kernel_size=2, padding='same', strides=1))
    model.add(ThresholdedReLU(1e-6))
    model.add(MaxPooling1D(pool_size=2, padding='same'))
    model.add(Flatten())
    model.add(Dense(64))
    model.add(ThresholdedReLU(1e-6))
    model.add(Dropout(0.5))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics = ['accuracy'])
    #model.summary()
    return model
Example #13
0
def avg_dice_2(y_true, y_pred):
    y_pred = ThresholdedReLU(0.5)(y_pred)
    loss = 0
    num_label = 2
    y_true_f = K.flatten(y_true[..., num_label])
    y_pred_f = K.flatten(y_pred[..., num_label])
    intersection = K.sum(y_true_f * y_pred_f)
    loss += (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
    return loss  # 1>= loss >0
Example #14
0
def DefaultActivation():
    if activation == "leaky-relu":
        return LeakyReLU()
    elif activation == "prelu":
        return PReLU()
    elif activation == "threshold-relu":
        return ThresholdedReLU()
    else:
        return Activation(activation)
Example #15
0
def train():
    # load the kinetics classes
    # datapath='/users/kevin/downloads/aicure-dataset/*/*.npy'
    datapath = r'C:\Users\Chris\Documents\projects\cs172b\aicure-dataset\*\*.npy'
    indexes, data, labels = load_data(datapath)

    base_model = Inception_Inflated3d(weights='rgb_imagenet_and_kinetics',
                                      include_top=False,
                                      input_shape=(NUM_FRAMES, FRAME_HEIGHT,
                                                   FRAME_WIDTH,
                                                   NUM_RGB_CHANNELS))

    output = Dropout(0.5)(base_model.output)
    predict = Reshape((-1, 1024))(output)
    #predict = AveragePooling1D(pool_size=3)(predict)
    predict = Dense(NUM_FRAMES,
                    kernel_initializer='normal',
                    activation='sigmoid')(predict)
    predict = ThresholdedReLU(theta=0.8, trainable=False)(predict)
    model = Model(inputs=base_model.input, outputs=predict)

    # freeze the first 100 layers
    for layer in model.layers[:100]:
        layer.trainable = False

    # randomize the weights for the remaining trainable layers
    # for layer in model.layers[150:195]: # change to 150:195 later
    #     layer.kernel_initializer = 'glorot_uniform'

    optimizer = keras.optimizers.Adam(lr=1e-4)
    model.compile(optimizer=optimizer, loss='mae', metrics=['accuracy'])

    #model.summary()

    train_indexes = indexes[:int(0.7 * len(indexes))]
    validation_indexes = indexes[int(0.7 * len(indexes)):]

    reducelr = tf.keras.callbacks.ReduceLROnPlateau(monitor='accuracy',
                                                    patience=2,
                                                    factor=0.2,
                                                    min_lr=1e-8)
    earlystop = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy',
                                                 patience=5)

    callbacks = [reducelr, earlystop]

    history = model.fit_generator(data_generator(data, labels, train_indexes,
                                                 BATCH_SIZE),
                                  steps_per_epoch=int(STEPS * .7),
                                  epochs=50,
                                  validation_data=data_generator(
                                      data, labels, validation_indexes),
                                  validation_steps=int(STEPS * .3),
                                  callbacks=callbacks)
    write_out(history, 'hist.csv')
    save_model(model, 'i3d')
Example #16
0
    def simple_block_2d(input,
                        number_of_filters,
                        downsample=False,
                        upsample=False,
                        convolution_kernel_size=(3, 3),
                        deconvolution_kernel_size=(2, 2),
                        weight_decay=0.0,
                        dropout_rate=0.0):

        number_of_output_filters = number_of_filters

        output = BatchNormalization()(input)
        output = ThresholdedReLU(theta=0)(output)

        if downsample:
            output = MaxPooling2D(pool_size=(2, 2))(output)

        output = Conv2D(
            filters=number_of_filters,
            kernel_size=convolution_kernel_size,
            padding='same',
            kernel_regularizer=regularizers.l2(weight_decay))(output)

        if upsample:
            output = Conv2DTranspose(
                filters=number_of_filters,
                kernel_size=deconvolution_kernel_size,
                padding='same',
                kernel_initializer=initializers.he_normal(),
                kernel_regularizer=regularizers.l2(weight_decay))(output)
            output = UpSampling2D(size=(2, 2))(output)

        if dropout_rate > 0.0:
            output = Dropout(rate=dropout_rate)(output)

        # Modify the input so that it has the same size as the output

        if downsample:
            input = Conv2D(filters=number_of_output_filters,
                           kernel_size=(1, 1),
                           strides=(2, 2),
                           padding='same')(input)
        elif upsample:
            input = Conv2DTranspose(filters=number_of_output_filters,
                                    kernel_size=(1, 1),
                                    padding='same')(input)
            input = UpSampling2D(size=(2, 2))(input)
        elif number_of_filters != number_of_output_filters:
            input = Conv2D(filters=number_of_output_filters,
                           kernel_size=(1, 1),
                           padding='same')(input)

        output = skip_connection(input, output)

        return (output)
Example #17
0
def get_activation_layer(activation):
    if activation == 'LeakyReLU':
        return LeakyReLU()
    if activation == 'PReLU':
        return PReLU()
    if activation == 'ELU':
        return ELU()
    if activation == 'ThresholdedReLU':
        return ThresholdedReLU()

    return Activation(activation)
Example #18
0
def create_model2():
	m = Sequential()

	# (Conv -> Relu -> Conv -> Relu -> MaxPool) * 3 -> Flat -> Dense

	for u in range(3):
		if u == 0:
			m.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 100, 3)))
		else:
			m.add(Conv2D(32, (3, 3), activation='relu'))
		m.add(ThresholdedReLU(0))
		m.add(Conv2D(32, (3, 3), activation='relu'))
		m.add(ThresholdedReLU(0))

		m.add(MaxPooling2D(pool_size=(2, 2)))

	m.add(Flatten())
	m.add(Dense(num_train_classes, activation='softmax'))

	return m
Example #19
0
    def _build_model(self):
        """
        Build and compile the Character Level CNN model

        Returns: None

        """
        # Input layer
        inputs = Input(shape=(self.input_size, ),
                       name='sent_input',
                       dtype='int64')
        # Embedding layers
        x = Embedding(self.alphabet_size + 1,
                      self.embedding_size,
                      input_length=self.input_size)(inputs)
        # Convolution layers
        for cl in self.conv_layers:
            x = Convolution1D(cl[0], cl[1])(x)
            x = ThresholdedReLU(self.threshold)(x)
            if cl[2] != -1:
                x = MaxPooling1D(cl[2])(x)
        x = Flatten()(x)
        # Fully connected layers
        for fl in self.fully_connected_layers:
            x = Dense(fl)(x)
            x = ThresholdedReLU(self.threshold)(x)
            x = Dropout(self.dropout_p)(x)
        # Output layer
        predictions = Dense(self.num_of_classes, activation='softmax')(x)
        # Build and compile model
        model = Model(inputs=inputs, outputs=predictions)
        # model.compile(optimizer=self.optimizer, loss=self.loss, metrics=[f1_m, recall_m, precision_m])
        model.compile(optimizer=RAdam(learning_rate=self.LR),
                      loss=self.loss,
                      metrics=[f1_m, recall_m, precision_m])
        self.model = model
        print("CharCNNZhang model built: ")
        self.model.summary()
Example #20
0
def create_model_vgg16():
	from keras.applications.vgg16 import VGG16

	input_tensor = Input(shape=(150, 100, 3))
	base_model = VGG16(weights='imagenet', include_top=False, input_tensor=input_tensor)

	for layer in base_model.layers[:15]:
		layer.trainable = False

	top_model = Sequential()
	top_model.add(ZeroPadding2D((1, 1), input_shape=base_model.output_shape[1:]))
	top_model.add(Conv2D(32, (3, 3), activation='relu'))
	top_model.add(BatchNormalization())
	top_model.add(ThresholdedReLU(0))

	top_model.add(ZeroPadding2D((1, 1)))
	top_model.add(Conv2D(32, (3, 3), activation='relu'))
	top_model.add(BatchNormalization())
	top_model.add(ThresholdedReLU(0))

	top_model.add(ZeroPadding2D((1, 1)))
	top_model.add(Conv2D(32, (3, 3), activation='relu'))
	top_model.add(BatchNormalization())
	top_model.add(ThresholdedReLU(0))

	top_model.add(MaxPooling2D(pool_size=(2, 2)))

	top_model.add(Flatten())
	top_model.add(BatchNormalization())
	top_model.add(Dense(num_train_classes, activation='softmax'))

	m = Model(inputs=base_model.input, outputs=top_model(base_model.output))

	# m.summary()

	return m
Example #21
0
    def __init__(self, inputLength, embedding_weights):
        print("init................................................")
        input_document_a = Input(shape=(inputLength, ),
                                 name="input_document_a")
        input_document_b = Input(shape=(inputLength, ),
                                 name="input_document_b")
        embedding_a = Embedding(input_dim=embedding_weights.shape[0],
                                output_dim=embedding_weights.shape[1],
                                input_length=inputLength,
                                name="embedding_a",
                                weights=[embedding_weights],
                                trainable=False)(input_document_a)
        embedding_b = Embedding(input_dim=embedding_weights.shape[0],
                                output_dim=embedding_weights.shape[1],
                                input_length=inputLength,
                                name="embedding_b",
                                weights=[embedding_weights],
                                trainable=False)(input_document_b)
        lstm_a = LSTM(units=embedding_weights.shape[1],
                      dropout=0.2,
                      name="lstm_a")(embedding_a)
        lstm_b = LSTM(units=embedding_weights.shape[1],
                      dropout=0.2,
                      name="lstm_b")(embedding_b)
        concate = Concatenate(input_shape=(embedding_weights.shape[1], ),
                              name="concate")([lstm_a, lstm_b])

        dense = Dense(units=inputLength,
                      input_shape=(2 * inputLength, ),
                      name="dense1")(concate)
        activation = Activation(input_shape=(inputLength, ),
                                activation="sigmoid",
                                name="activation")(dense)
        dense2 = Dense(units=1,
                       input_shape=(inputLength, ),
                       activation="softmax",
                       name="dense2")(activation)
        # output = ThresholdedBinary(name="output")(dense2)
        output = ThresholdedReLU(theta=0.5, name="output")(dense2)
        self.model = Model(inputs=[input_document_a, input_document_b],
                           outputs=output)
Example #22
0
def create_model(input_size):
    model = Sequential()
    model.add(
        LSTM(200,
             batch_input_shape=(None, 1, input_size),
             activation='softsign',
             recurrent_activation='hard_sigmoid',
             return_sequences=True))
    model.add(
        LSTM(100,
             batch_input_shape=(None, 1, input_size),
             activation='softsign',
             recurrent_activation='hard_sigmoid',
             return_sequences=True))
    model.add(
        LSTM(80,
             batch_input_shape=(None, 1, input_size),
             activation='softsign',
             recurrent_activation='hard_sigmoid',
             return_sequences=True))
    model.add(
        LSTM(60,
             batch_input_shape=(None, 1, input_size),
             activation='softsign',
             recurrent_activation='hard_sigmoid',
             return_sequences=False))
    model.add(Dense(60))
    model.add(Activation('softplus'))
    model.add(Dense(40))
    model.add(ThresholdedReLU())
    model.add(Dense(20))
    model.add(Activation('sigmoid'))
    model.add(Dense(2))
    model.add(Activation('hard_sigmoid'))
    model.compile(loss='cosine_proximity',
                  optimizer=RMSprop(),
                  metrics=['acc'])
    return model
Example #23
0
def get(activation, nb_features=0, **kwargs):
    if (activation == 'WiG_Dense'):
        if (not 'kernel_initializer' in kwargs):
            kwargs['kernel_initializer'] = 'zeros'

        return WiG_Dense(nb_features, **kwargs)

    elif (activation == 'WiG_Conv2D'):
        if (not 'kernel_size' in kwargs):
            kwargs['kernel_size'] = (3, 3)

        if (not 'padding' in kwargs):
            kwargs['padding'] = 'same'

        if (not 'kernel_initializer' in kwargs):
            kwargs['kernel_initializer'] = 'zeros'

        return WiG_Conv2D(nb_features, **kwargs)

    elif (activation == 'LeakyReLU'):
        return LeakyReLU(**kwargs)

    elif (activation == 'PReLU'):
        return PReLU(**kwargs)

    elif (activation == 'ELU'):
        return ELU(**kwargs)

    elif (activation == 'ThresholdedReLU'):
        return ThresholdedReLU(**kwargs)

    elif (activation == 'Swish'):
        return Swish(**kwargs)

    elif (activation == 'SiL'):
        return SiL(**kwargs)

    return Activation(activation, **kwargs)
Example #24
0
print("Loaded")

print("Building the model..."),
# building the model

# Input layer
inputs = Input(shape=(l0, ), name='sent_input', dtype='int64')

# Embedding layer

x = Embedding(alphabet_size + 1, embedding_size, input_length=l0)(inputs)

# Convolution layers
for cl in conv_layers:
    x = Convolution1D(cl[0], cl[1])(x)
    x = ThresholdedReLU(th)(x)
    if not cl[2] is None:
        x = MaxPooling1D(cl[2])(x)

x = Flatten()(x)

#Fully connected layers

for fl in fully_layers:
    x = Dense(fl)(x)
    x = ThresholdedReLU(th)(x)
    x = Dropout(0.5)(x)

predictions = Dense(num_of_classes, activation='softmax')(x)

model = Model(input=inputs, output=predictions)
Example #25
0
def test_delete_channels_advanced_activations(channel_index, data_format):
    layer_test_helper_flatten_2d(LeakyReLU(), channel_index, data_format)
    layer_test_helper_flatten_2d(ELU(), channel_index, data_format)
    layer_test_helper_flatten_2d(ThresholdedReLU(), channel_index, data_format)
Example #26
0
def create_resunet_model_3d(input_image_size,
                            number_of_outputs=1,
                            number_of_filters_at_base_layer=32,
                            bottle_neck_block_depth_schedule=(3, 4),
                            convolution_kernel_size=(3, 3, 3),
                            deconvolution_kernel_size=(2, 2, 2),
                            dropout_rate=0.0,
                            weight_decay=0.0,
                            mode='classification'):
    """
    3-D implementation of the Resnet + U-net deep learning architecture.

    Creates a keras model of the U-net + ResNet deep learning architecture for
    image segmentation and regression with the paper available here:

            https://arxiv.org/abs/1608.04117

    This particular implementation was ported from the following python
    implementation:

            https://github.com/veugene/fcn_maker/


    Arguments
    ---------
    input_image_size : tuple of length 4
        Used for specifying the input tensor shape.  The
        shape (or dimension) of that tensor is the image dimensions followed by
        the number of channels (e.g., red, green, and blue).  The batch size
        (i.e., number of training images) is not specified a priori.

    number_of_outputs : integer
        Meaning depends on the mode.  For 'classification' this is the number of
        segmentation labels.  For 'regression' this is the number of outputs.

    number_of_filters_at_base_layer : integer
        Number of filters at the beginning and end of the 'U'.  Doubles at each
        descending/ascending layer.

    bottle_neck_block_depth_schedule : tuple
        Tuple that provides the encoding layer schedule for the number of bottleneck
        blocks per long skip connection.

    convolution_kernel_size : tuple of length 3
        3-d vector defining the kernel size during the encoding path

    deconvolution_kernel_size : tuple of length 3
        3-d vector defining the kernel size during the decoding

    dropout_rate : scalar
        Float between 0 and 1 to use between dense layers.

    weight_decay : scalar
        Weighting parameter for L2 regularization of the kernel weights of the
        convolution layers.  Default = 0.0.

    mode : string
        'classification' or 'regression'.  Default = 'classification'.

    Returns
    -------
    Keras model
        A 3-D Keras model defining the network.

    Example
    -------
    >>> model = create_resunet_model_3d((128, 128, 128, 1))
    >>> model.summary()
    """
    def simple_block_3d(input,
                        number_of_filters,
                        downsample=False,
                        upsample=False,
                        convolution_kernel_size=(3, 3, 3),
                        deconvolution_kernel_size=(2, 2, 2),
                        weight_decay=0.0,
                        dropout_rate=0.0):

        number_of_output_filters = number_of_filters

        output = BatchNormalization()(input)
        output = ThresholdedReLU(theta=0)(output)

        if downsample:
            output = MaxPooling3D(pool_size=(2, 2, 2))(output)

        output = Conv3D(
            filters=number_of_filters,
            kernel_size=convolution_kernel_size,
            padding='same',
            kernel_regularizer=regularizers.l2(weight_decay))(output)

        if upsample:
            output = Conv3DTranspose(
                filters=number_of_filters,
                kernel_size=deconvolution_kernel_size,
                padding='same',
                kernel_initializer=initializers.he_normal(),
                kernel_regularizer=regularizers.l2(weight_decay))(output)
            output = UpSampling3D(size=(2, 2, 2))(output)

        if dropout_rate > 0.0:
            output = Dropout(rate=dropout_rate)(output)

        # Modify the input so that it has the same size as the output

        if downsample:
            input = Conv3D(filters=number_of_output_filters,
                           kernel_size=(1, 1, 1),
                           strides=(2, 2, 2),
                           padding='same')(input)
        elif upsample:
            input = Conv3DTranspose(filters=number_of_output_filters,
                                    kernel_size=(1, 1, 1),
                                    padding='same')(input)
            input = UpSampling3D(size=(2, 2, 2))(input)
        elif number_of_filters != number_of_output_filters:
            input = Conv3D(filters=number_of_output_filters,
                           kernel_size=(1, 1, 1),
                           padding='same')(input)

        output = skip_connection(input, output)

        return (output)

    def bottle_neck_block_3d(input,
                             number_of_filters,
                             downsample=False,
                             upsample=False,
                             deconvolution_kernel_size=(2, 2, 2),
                             weight_decay=0.0,
                             dropout_rate=0.0):

        output = input

        number_of_output_filters = number_of_filters

        if downsample:
            output = BatchNormalization()(output)
            output = ThresholdedReLU(theta=0)(output)

            output = Conv3D(
                filters=number_of_filters,
                kernel_size=(1, 1, 1),
                strides=(2, 2, 2),
                kernel_initializer=initializers.he_normal(),
                kernel_regularizer=regularizers.l2(weight_decay))(output)

        output = BatchNormalization()(output)
        output = ThresholdedReLU(theta=0)(output)

        output = Conv3D(
            filters=number_of_filters,
            kernel_size=(1, 1, 1),
            kernel_initializer=initializers.he_normal(),
            kernel_regularizer=regularizers.l2(weight_decay))(output)

        output = BatchNormalization()(output)
        output = ThresholdedReLU(theta=0)(output)

        if upsample:
            output = Conv3DTranspose(
                filters=number_of_filters,
                kernel_size=deconvolution_kernel_size,
                padding='same',
                kernel_initializer=initializers.he_normal(),
                kernel_regularizer=regularizers.l2(weight_decay))(output)
            output = UpSampling3D(size=(2, 2, 2))(output)

        output = Conv3D(
            filters=(number_of_filters * 4),
            kernel_size=(1, 1, 1),
            kernel_initializer=initializers.he_normal(),
            kernel_regularizer=regularizers.l2(weight_decay))(output)

        number_of_output_filters = number_of_filters * 4

        if dropout_rate > 0.0:
            output = Dropout(rate=dropout_rate)(output)

        # Modify the input so that it has the same size as the output

        if downsample:
            input = Conv3D(filters=number_of_output_filters,
                           kernel_size=(1, 1, 1),
                           strides=(2, 2, 2),
                           padding='same')(input)
        elif upsample:
            input = Conv3DTranspose(filters=number_of_output_filters,
                                    kernel_size=(1, 1, 1),
                                    padding='same')(input)
            input = UpSampling3D(size=(2, 2, 2))(input)
        elif number_of_filters != number_of_output_filters:
            input = Conv3D(filters=number_of_output_filters,
                           kernel_size=(1, 1, 1),
                           padding='valid')(input)

        output = skip_connection(input, output)

        return (output)

    def skip_connection(source, target, merge_mode='sum'):
        layer_list = [source, target]

        output = None
        if merge_mode == 'sum':
            output = Add()(layer_list)
        else:
            channel_axis = 0
            if K.image_data_format() == 'channels_last':
                channel_axis = -1
            output = Concatenate(axis=channel_axis)(layer_list)

        return (output)

    inputs = Input(shape=input_image_size)

    encoding_layers_with_long_skip_connections = []
    encoding_layer_count = 1

    # Preprocessing layer

    model = Conv3D(filters=number_of_filters_at_base_layer,
                   kernel_size=convolution_kernel_size,
                   activation='relu',
                   padding='same',
                   kernel_initializer=initializers.he_normal(),
                   kernel_regularizer=regularizers.l2(weight_decay))(inputs)

    encoding_layers_with_long_skip_connections.append(model)
    encoding_layer_count += 1

    # Encoding initialization path

    model = simple_block_3d(
        model,
        number_of_filters_at_base_layer,
        downsample=True,
        convolution_kernel_size=convolution_kernel_size,
        deconvolution_kernel_size=deconvolution_kernel_size,
        weight_decay=weight_decay,
        dropout_rate=dropout_rate)

    encoding_layers_with_long_skip_connections.append(model)
    encoding_layer_count += 1

    # Encoding main path

    number_of_bottle_neck_layers = len(bottle_neck_block_depth_schedule)
    for i in range(number_of_bottle_neck_layers):
        number_of_filters = number_of_filters_at_base_layer * 2**i

        for j in range(bottle_neck_block_depth_schedule[i]):

            do_downsample = False
            if j == 0:
                do_downsample = True
            else:
                do_downsample = False

            model = bottle_neck_block_3d(
                model,
                number_of_filters=number_of_filters,
                downsample=do_downsample,
                deconvolution_kernel_size=deconvolution_kernel_size,
                weight_decay=weight_decay,
                dropout_rate=dropout_rate)

            if j == (bottle_neck_block_depth_schedule[i] - 1):
                encoding_layers_with_long_skip_connections.append(model)
                encoding_layer_count += 1

    encoding_layer_count -= 1

    # Transition path

    number_of_filters = number_of_filters_at_base_layer * 2**number_of_bottle_neck_layers

    model = bottle_neck_block_3d(
        model,
        number_of_filters=number_of_filters,
        downsample=True,
        deconvolution_kernel_size=deconvolution_kernel_size,
        weight_decay=weight_decay,
        dropout_rate=dropout_rate)
    model = bottle_neck_block_3d(
        model,
        number_of_filters=number_of_filters,
        upsample=True,
        deconvolution_kernel_size=deconvolution_kernel_size,
        weight_decay=weight_decay,
        dropout_rate=dropout_rate)

    # Decoding main path

    number_of_bottle_neck_layers = len(bottle_neck_block_depth_schedule)
    for i in range(number_of_bottle_neck_layers):
        number_of_filters = (number_of_filters_at_base_layer *
                             2**(number_of_bottle_neck_layers - i - 1))

        for j in range(
                bottle_neck_block_depth_schedule[number_of_bottle_neck_layers -
                                                 i - 1]):

            do_upsample = False
            if j == bottle_neck_block_depth_schedule[
                    number_of_bottle_neck_layers - i - 1] - 1:
                do_upsample = True
            else:
                do_upsample = False

            model = bottle_neck_block_3d(
                model,
                number_of_filters=number_of_filters,
                upsample=do_upsample,
                deconvolution_kernel_size=deconvolution_kernel_size,
                weight_decay=weight_decay,
                dropout_rate=dropout_rate)

            if j == 0:
                model = Conv3D(filters=(number_of_filters * 4),
                               kernel_size=(1, 1, 1),
                               padding='same')(model)
                model = skip_connection(
                    encoding_layers_with_long_skip_connections[
                        encoding_layer_count - 1], model)
                encoding_layer_count -= 1

    # Decoding initialization path

    model = simple_block_3d(
        model,
        number_of_filters_at_base_layer,
        upsample=True,
        convolution_kernel_size=convolution_kernel_size,
        deconvolution_kernel_size=deconvolution_kernel_size,
        weight_decay=weight_decay,
        dropout_rate=dropout_rate)

    # Postprocessing layer

    model = Conv3D(filters=number_of_filters_at_base_layer,
                   kernel_size=convolution_kernel_size,
                   activation='relu',
                   padding='same',
                   kernel_initializer=initializers.he_normal(),
                   kernel_regularizer=regularizers.l2(weight_decay))(model)
    encoding_layer_count -= 1

    model = skip_connection(
        encoding_layers_with_long_skip_connections[encoding_layer_count - 1],
        model)

    model = BatchNormalization()(model)
    model = ThresholdedReLU(theta=0)(model)

    convActivation = ''

    if mode == 'classification':
        if number_of_outputs == 2:
            convActivation = 'sigmoid'
        else:
            convActivation = 'softmax'
    elif mode == 'regression':
        convActivation = 'linear'
    else:
        raise ValueError(
            'mode must be either `classification` or `regression`.')

    outputs = Conv3D(filters=number_of_outputs,
                     kernel_size=(1, 1, 1),
                     activation=convActivation,
                     kernel_regularizer=regularizers.l2(weight_decay))(model)

    resunet_model = Model(inputs=inputs, outputs=outputs)

    return resunet_model
Example #27
0
    def _conv_block(self,
                    inputs,
                    filters,
                    alpha,
                    kernel=(3, 3),
                    strides=(1, 1)):
        """Adds an initial convolution layer (with batch normalization and relu6).

        # Arguments
            inputs: Input tensor of shape `(rows, cols, 3)`
                (with `channels_last` data format) or
                (3, rows, cols) (with `channels_first` data format).
                It should have exactly 3 inputs channels,
                and width and height should be no smaller than 32.
                E.g. `(224, 224, 3)` would be one valid value.
            filters: Integer, the dimensionality of the output space
                (i.e. the number of output filters in the convolution).
            alpha: controls the width of the network.
                - If `alpha` < 1.0, proportionally decreases the number
                    of filters in each layer.
                - If `alpha` > 1.0, proportionally increases the number
                    of filters in each layer.
                - If `alpha` = 1, default number of filters from the paper
                     are used at each layer.
            kernel: An integer or tuple/list of 2 integers, specifying the
                width and height of the 2D convolution window.
                Can be a single integer to specify the same value for
                all spatial dimensions.
            strides: An integer or tuple/list of 2 integers,
                specifying the strides of the convolution along the width and height.
                Can be a single integer to specify the same value for
                all spatial dimensions.
                Specifying any stride value != 1 is incompatible with specifying
                any `dilation_rate` value != 1.

        # Input shape
            4D tensor with shape:
            `(samples, channels, rows, cols)` if data_format='channels_first'
            or 4D tensor with shape:
            `(samples, rows, cols, channels)` if data_format='channels_last'.

        # Output shape
            4D tensor with shape:
            `(samples, filters, new_rows, new_cols)` if data_format='channels_first'
            or 4D tensor with shape:
            `(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
            `rows` and `cols` values might have changed due to stride.

        # Returns
            Output tensor of block.
        """
        channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
        filters = int(filters * alpha)
        x = ZeroPadding2D(padding=(1, 1), name='conv1_pad')(inputs)
        x = Conv2D(filters,
                   kernel,
                   padding='valid',
                   use_bias=False,
                   strides=strides,
                   name='conv1')(x)
        x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
        return ThresholdedReLU(0)(x)  # 原实现relu6
Example #28
0
def load_model(input_shape, num_labels, axis=-1, base_filter=32, depth_size=4, se_res_block=True, se_ratio=16,
               noise=0.1, last_relu=False, atten_gate=False):
    def conv3d(layer_input, filters, axis=-1, se_res_block=True, se_ratio=16, down_sizing=True):
        if down_sizing == True:
            layer_input = MaxPooling3D(pool_size=(2, 2, 2))(layer_input)
        d = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(layer_input)
        d = InstanceNormalization(axis=axis)(d)
        d = LeakyReLU(alpha=0.3)(d)
        d = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(d)
        d = InstanceNormalization(axis=axis)(d)
        if se_res_block == True:
            se = GlobalAveragePooling3D()(d)
            se = Dense(filters // se_ratio, activation='relu')(se)
            se = Dense(filters, activation='sigmoid')(se)
            se = Reshape([1, 1, 1, filters])(se)
            d = Multiply()([d, se])
            shortcut = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(layer_input)
            shortcut = InstanceNormalization(axis=axis)(shortcut)
            d = add([d, shortcut])
        d = LeakyReLU(alpha=0.3)(d)
        return d

    def deconv3d(layer_input, skip_input, filters, axis=-1, se_res_block=True, se_ratio=16, atten_gate=False):
        if atten_gate == True:
            gating = Conv3D(filters, (1, 1, 1), use_bias=False, padding='same')(layer_input)
            gating = InstanceNormalization(axis=axis)(gating)
            attention = Conv3D(filters, (2, 2, 2), strides=(2, 2, 2), use_bias=False, padding='valid')(skip_input)
            attention = InstanceNormalization(axis=axis)(attention)
            attention = add([gating, attention])
            attention = Conv3D(1, (1, 1, 1), use_bias=False, padding='same', activation='sigmoid')(attention)
            # attention = Lambda(resize_by_axis, arguments={'dim_1':skip_input.get_shape().as_list()[1],'dim_2':skip_input.get_shape().as_list()[2],'ax':3})(attention) # error when None dimension is feeded.
            # attention = Lambda(resize_by_axis, arguments={'dim_1':skip_input.get_shape().as_list()[1],'dim_2':skip_input.get_shape().as_list()[3],'ax':2})(attention)
            attention = ZeroPadding3D(((0, 1), (0, 1), (0, 1)))(attention)
            attention = UpSampling3D((2, 2, 2))(attention)
            attention = CropToConcat3D(mode='crop')([attention, skip_input])
            attention = Lambda(lambda x: K.tile(x, [1, 1, 1, 1, filters]))(attention)
            skip_input = multiply([skip_input, attention])

        u1 = ZeroPadding3D(((0, 1), (0, 1), (0, 1)))(layer_input)
        u1 = Conv3DTranspose(filters, (2, 2, 2), strides=(2, 2, 2), use_bias=False, padding='same')(u1)
        u1 = InstanceNormalization(axis=axis)(u1)
        u1 = LeakyReLU(alpha=0.3)(u1)
        u1 = CropToConcat3D()([u1, skip_input])
        u2 = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(u1)
        u2 = InstanceNormalization(axis=axis)(u2)
        u2 = LeakyReLU(alpha=0.3)(u2)
        u2 = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(u2)
        u2 = InstanceNormalization(axis=axis)(u2)
        if se_res_block == True:
            se = GlobalAveragePooling3D()(u2)
            se = Dense(filters // se_ratio, activation='relu')(se)
            se = Dense(filters, activation='sigmoid')(se)
            se = Reshape([1, 1, 1, filters])(se)
            u2 = Multiply()([u2, se])
            shortcut = Conv3D(filters, (3, 3, 3), use_bias=False, padding='same')(u1)
            shortcut = InstanceNormalization(axis=axis)(shortcut)
            u2 = add([u2, shortcut])
        u2 = LeakyReLU(alpha=0.3)(u2)
        return u2

    def CropToConcat3D(mode='concat'):
        def crop_to_concat_3D(concat_layers, axis=-1):
            bigger_input, smaller_input = concat_layers
            bigger_shape, smaller_shape = tf.shape(bigger_input), \
                                          tf.shape(smaller_input)
            sh, sw, sd = smaller_shape[1], smaller_shape[2], smaller_shape[3]
            bh, bw, bd = bigger_shape[1], bigger_shape[2], bigger_shape[3]
            dh, dw, dd = bh - sh, bw - sw, bd - sd
            cropped_to_smaller_input = bigger_input[:, :-dh,
                                       :-dw,
                                       :-dd, :]
            if mode == 'concat':
                return K.concatenate([smaller_input, cropped_to_smaller_input], axis=axis)
            elif mode == 'add':
                return smaller_input + cropped_to_smaller_input
            elif mode == 'crop':
                return cropped_to_smaller_input

        return Lambda(crop_to_concat_3D)

    def resize_by_axis(image, dim_1, dim_2, ax):  # it is available only for 1 channel 3D
        resized_list = []
        unstack_img_depth_list = tf.unstack(image, axis=ax)
        for i in unstack_img_depth_list:
            resized_list.append(tf.image.resize_images(i, [dim_1, dim_2]))  # defaults to ResizeMethod.BILINEAR
        stack_img = tf.stack(resized_list, axis=ax + 1)
        return stack_img

    input_img = Input(shape=input_shape, name='Input')
    d0 = GaussianNoise(noise)(input_img)
    d1 = Conv3D(base_filter, (3, 3, 3), use_bias=False, padding='same')(d0)
    d1 = InstanceNormalization(axis=axis)(d1)
    d1 = LeakyReLU(alpha=0.3)(d1)
    d2 = conv3d(d1, base_filter * 2, se_res_block=se_res_block)
    d3 = conv3d(d2, base_filter * 4, se_res_block=se_res_block)
    d4 = conv3d(d3, base_filter * 8, se_res_block=se_res_block)

    if depth_size == 4:
        d5 = conv3d(d4, base_filter * 16, se_res_block=se_res_block)
        u4 = deconv3d(d5, d4, base_filter * 8, se_res_block=se_res_block, atten_gate=atten_gate)
        u3 = deconv3d(u4, d3, base_filter * 4, se_res_block=se_res_block, atten_gate=atten_gate)
    elif depth_size == 3:
        u3 = deconv3d(d4, d3, base_filter * 4, se_res_block=se_res_block, atten_gate=atten_gate)
    else:
        raise Exception('depth size must be 3 or 4. you put ', depth_size)

    u2 = deconv3d(u3, d2, base_filter * 2, se_res_block=se_res_block, atten_gate=atten_gate)
    u1 = ZeroPadding3D(((0, 1), (0, 1), (0, 1)))(u2)
    u1 = Conv3DTranspose(base_filter, (2, 2, 2), strides=(2, 2, 2), use_bias=False, padding='same')(u1)
    u1 = InstanceNormalization(axis=axis)(u1)
    u1 = LeakyReLU(alpha=0.3)(u1)
    u1 = CropToConcat3D()([u1, d1])
    u1 = Conv3D(base_filter, (3, 3, 3), use_bias=False, padding='same')(u1)
    u1 = InstanceNormalization(axis=axis)(u1)
    u1 = LeakyReLU(alpha=0.3)(u1)
    output_img = Conv3D(num_labels, kernel_size=1, strides=1, padding='same', activation='sigmoid')(u1)
    if last_relu == True:
        output_img = ThresholdedReLU(theta=0.5)(output_img)
    model = Model(inputs=input_img, outputs=output_img)
    return model
Example #29
0
    def _depthwise_conv_block(self,
                              inputs,
                              pointwise_conv_filters,
                              alpha,
                              depth_multiplier=1,
                              strides=(1, 1),
                              block_id=1):
        """Adds a depthwise convolution block.

        A depthwise convolution block consists of a depthwise conv,
        batch normalization, relu6, pointwise convolution,
        batch normalization and relu6 activation.

        # Arguments
            inputs: Input tensor of shape `(rows, cols, channels)`
                (with `channels_last` data format) or
                (channels, rows, cols) (with `channels_first` data format).
            pointwise_conv_filters: Integer, the dimensionality of the output space
                (i.e. the number of output filters in the pointwise convolution).
            alpha: controls the width of the network.
                - If `alpha` < 1.0, proportionally decreases the number
                    of filters in each layer.
                - If `alpha` > 1.0, proportionally increases the number
                    of filters in each layer.
                - If `alpha` = 1, default number of filters from the paper
                     are used at each layer.
            depth_multiplier: The number of depthwise convolution output channels
                for each input channel.
                The total number of depthwise convolution output
                channels will be equal to `filters_in * depth_multiplier`.
            strides: An integer or tuple/list of 2 integers,
                specifying the strides of the convolution along the width and height.
                Can be a single integer to specify the same value for
                all spatial dimensions.
                Specifying any stride value != 1 is incompatible with specifying
                any `dilation_rate` value != 1.
            block_id: Integer, a unique identification designating the block number.

        # Input shape
            4D tensor with shape:
            `(batch, channels, rows, cols)` if data_format='channels_first'
            or 4D tensor with shape:
            `(batch, rows, cols, channels)` if data_format='channels_last'.

        # Output shape
            4D tensor with shape:
            `(batch, filters, new_rows, new_cols)` if data_format='channels_first'
            or 4D tensor with shape:
            `(batch, new_rows, new_cols, filters)` if data_format='channels_last'.
            `rows` and `cols` values might have changed due to stride.

        # Returns
            Output tensor of block.
        """
        channel_axis = 1 if K.image_data_format() == 'channels_first' else -1
        pointwise_conv_filters = int(pointwise_conv_filters * alpha)

        x = ZeroPadding2D(padding=(1, 1),
                          name='conv_pad_%d' % block_id)(inputs)
        x = DepthwiseConv2D((3, 3),
                            padding='valid',
                            depth_multiplier=depth_multiplier,
                            strides=strides,
                            use_bias=False,
                            name='conv_dw_%d' % block_id)(x)
        x = BatchNormalization(axis=channel_axis,
                               name='conv_dw_%d_bn' % block_id)(x)
        x = ThresholdedReLU(0)(x)  # 原实现relu6

        x = Conv2D(pointwise_conv_filters, (1, 1),
                   padding='same',
                   use_bias=False,
                   strides=(1, 1),
                   name='conv_pw_%d' % block_id)(x)
        x = BatchNormalization(axis=channel_axis,
                               name='conv_pw_%d_bn' % block_id)(x)
        return ThresholdedReLU(0)(x)  # 原实现relu6
Example #30
0
def run_CNN(use_pfms=True):

    batch_size = 256
    epochs = 80
    patience = 5

    model = Sequential()
    model.add(
        Conv2D(filters=32,
               kernel_size=(4, 20),
               padding="valid",
               input_shape=(1, 4, 3000)))
    model.add(MaxPooling2D(pool_size=(1, 4)))
    model.add(ThresholdedReLU(theta=3.0))
    model.add(AveragePooling2D(pool_size=(1, 20), strides=(1, 2)))
    # connect to CNN
    model.add(
        Conv2D(filters=32,
               kernel_size=(1, 8),
               strides=(1, 1),
               padding="valid",
               activation='relu'))
    model.add(MaxPooling2D(pool_size=(1, 4)))
    model.add(Dropout(0.1))
    model.add(
        Conv2D(filters=32,
               kernel_size=(1, 8),
               strides=(1, 1),
               padding="valid",
               activation='relu'))
    model.add(MaxPooling2D(pool_size=(1, 4)))
    model.add(Dropout(0.1))
    model.add(
        Conv2D(filters=32,
               kernel_size=(1, 8),
               strides=(1, 1),
               padding="valid",
               activation='relu'))
    model.add(Flatten())
    model.add(Dense(units=32, activation='relu'))
    model.add(Dense(units=1, activation='sigmoid'))
    model.compile(loss='binary_crossentropy',
                  optimizer='adam',
                  metrics=['acc'])

    if use_pfms:
        conv_weights = generate_motif_weights(model, pfmfns)
        model.layers[0].set_weights(conv_weights)

    # output name
    outdir = args.out
    if not os.path.exists(outdir): os.makedirs(outdir)
    fns = [int(fn.split('_')[0]) for fn in os.listdir(outdir)]
    if fns:
        outfn_base = outdir + '/%d_' % (max(fns) + 1)
    else:
        outfn_base = outdir + '/1_'
    print "output base: ", outfn_base

    # save model struct
    model_struct = model.to_json()
    outfn_struct = open(outfn_base + 'model_struct.json', 'w+')
    json.dump(model_struct, outfn_struct)
    outfn_struct.close()

    # dead relu detector
    #    outfn_deadrelu = outfn_base + 'deadrelu.csv'

    # best model
    outfn_bestmodel = outfn_base + 'model.h5'

    # training log
    outfn_log = outfn_base + 'training_log.csv'

    # epoch time
    outfn_epoch = outfn_base + 'epoch_time.csv'

    # train CNN
    hist, batch_loss_hist = train(
        model,
        X_train,
        y_train,
        X_valid,
        y_valid,
        batch_size,
        epochs,
        class_weight=False,
        loss_per_batch=True,
        early_stopping_metric='val_loss',
        value_cutoff=2.1,
        patience=patience,
        min_delta=0.00001,
        #                                      deadrelu_filepath=outfn_deadrelu,
        #                                      only_first_epoch=True,
        best_model_filepath=outfn_bestmodel,
        log_filepath=outfn_log,
        epochtime_filepath=outfn_epoch)

    # training history plot
    fig = CNN.plot_training_hist(hist, batch_loss_hist)
    plt.savefig(outfn_base + 'training_history.pdf')

    # model parameters file
    outfn_params = open(outfn_base + 'params.txt', 'w+')
    pred_auc = model.predict(X_valid, batch_size=128)
    auc = roc_auc_score(y_valid, pred_auc)
    params_paragraph = "Validation auc:%s\nParams:" % (auc)
    #    for key, value in params.iteritems():
    #        params_paragraph += "\n%s:%s"%(key,value)
    #    outfn_params.write(params_paragraph)
    outfn_params.close()