print(newProba[11]) print(newProba[21]) print("1") print(newProba[0:9]) print("2") print(newProba[10:19]) print("3") print(newProba[20:-1]) print(labels) print(model.predict_classes(X)) from sklearn.manifold import TSNE model = TSNE(n_components=nb_classes, random_state=0, init="pca") toPlot = model.fit_transform(newProba) title = "t-SNE embedding of the spectrograms" x_min, x_max = np.min(toPlot, 0), np.max(toPlot, 0) toPlot = (toPlot - x_min) / (x_max - x_min) print(toPlot.shape) labelsName = ["bob", "steve", "dave"] cmap = sns.color_palette("Set2", n_colors=3) plt.figure() for i in range(toPlot.shape[0]): plt.text(