def createModelGrayscale():
    net = EfficientNetB5((256, 256, 1),
                         weights=None,
                         include_top=False,
                         pooling='avg')
    x = Dense(14,
              kernel_initializer=EfficientNetDenseInitializer())(net.output)
    x = Activation('sigmoid')(x)
    model = Model(net.input, x)
    model.compile(optimizer='adam',
                  loss='binary_crossentropy',
                  metrics=['accuracy', auc_roc])
    model.summary()
    return model
Example #2
0
def model_fn(FLAGS, objective, optimizer, metrics):

    model = EfficientNetB5(weights=None,
                           include_top=False,
                           input_shape=(FLAGS.input_size, FLAGS.input_size, 3),
                           classes=FLAGS.num_classes,
                           pooling=max)

    model.load_weights('/home/work/user-job-dir/src/efficientnet-b5_notop.h5')
    for i, layer in enumerate(model.layers):
        if "batch_normalization" in layer.name:
            model.layers[i] = GroupNormalization(groups=32, axis=-1, epsilon=0.00001)
    x = model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(0.4)(x)
    predictions = Dense(FLAGS.num_classes, activation='softmax')(x)  # activation="linear",activation='softmax'
    model = Model(input=model.input, output=predictions)
    model = multi_gpu_model(model, 4)  # 修改成自身需要的GPU数量,4代表用4个GPU同时加载程序
    # model.load_weights('/home/work/user-job-dir/src/weights_004_0.9223.h5')
    model.compile(loss=objective, optimizer=optimizer, metrics=metrics)
    return model
Example #3
0
def model_fn(FLAGS, objective, optimizer, metrics):

    model = EfficientNetB5(weights='imagenet',
                           include_top=False,
                           input_shape=(FLAGS.input_size, FLAGS.input_size, 3),
                           classes=FLAGS.num_classes,
                           pooling=max)

    #model.load_weights('/home/yons/code/tmp_garbage/model_snapshots/weights_001_0.6548.h5')
    for i, layer in enumerate(model.layers):
        if "batch_normalization" in layer.name:
            model.layers[i] = GroupNormalization(groups=32,
                                                 axis=-1,
                                                 epsilon=0.00001)
    x = model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(0.4)(x)
    predictions = Dense(FLAGS.num_classes, activation='softmax')(
        x)  # activation="linear",activation='softmax'
    model = Model(input=model.input, output=predictions)
    #model = multi_gpu_model(model, 4)  # 修改成自身需要的GPU数量,4代表用4个GPU同时加载程序
    #model.load_weights('/home/yons/code/tmp_garbage/model_snapshots_3_有用的异常模型/weights_009_0.7229.h5')
    model.compile(loss=objective, optimizer=optimizer, metrics=metrics)
    return model
def cnn_model(model_name, img_size):
    """
    Model definition using Xception net architecture
    """
    input_size = (img_size, img_size, 3)

    if model_name == "xception":
        print("Loading Xception wts...")
        baseModel = Xception(weights="imagenet",
                             include_top=False,
                             input_shape=(img_size, img_size, 3))
    elif model_name == "iv3":
        baseModel = InceptionV3(weights="imagenet",
                                include_top=False,
                                input_shape=(img_size, img_size, 3))
    elif model_name == "irv2":
        baseModel = InceptionResNetV2(weights="imagenet",
                                      include_top=False,
                                      input_shape=(img_size, img_size, 3))
    elif model_name == "resnet":
        baseModel = ResNet50(weights="imagenet",
                             include_top=False,
                             input_shape=(img_size, img_size, 3))
    elif model_name == "nasnet":
        baseModel = NASNetLarge(weights="imagenet",
                                include_top=False,
                                input_shape=(img_size, img_size, 3))
    elif model_name == "ef0":
        baseModel = EfficientNetB0(input_size,
                                   weights="imagenet",
                                   include_top=False)
    elif model_name == "ef5":
        baseModel = EfficientNetB5(input_size,
                                   weights="imagenet",
                                   include_top=False)

    headModel = baseModel.output
    headModel = GlobalAveragePooling2D()(headModel)
    headModel = Dense(512, activation="relu",
                      kernel_initializer="he_uniform")(headModel)
    headModel = Dropout(0.4)(headModel)
    # headModel = Dense(512, activation="relu", kernel_initializer="he_uniform")(
    #     headModel
    # )
    # headModel = Dropout(0.5)(headModel)
    predictions = Dense(5,
                        activation="softmax",
                        kernel_initializer="he_uniform")(headModel)
    model = Model(inputs=baseModel.input, outputs=predictions)

    for layer in baseModel.layers:
        layer.trainable = False

    optimizer = Nadam(lr=0.002,
                      beta_1=0.9,
                      beta_2=0.999,
                      epsilon=1e-08,
                      schedule_decay=0.004)
    model.compile(loss="categorical_crossentropy",
                  optimizer=optimizer,
                  metrics=["accuracy"])
    return model
Example #5
0
def main():
    args = parse_args()

    if args.name is None:
        args.name = 'WideResNet%s-%s' % (args.depth, args.width)
        if args.cutout:
            args.name += '_wCutout'
        if args.auto_augment:
            args.name += '_wAutoAugment'

    if not os.path.exists('models/%s' % args.name):
        os.makedirs('models/%s' % args.name)

    print('Config -----')
    for arg in vars(args):
        print('%s: %s' % (arg, getattr(args, arg)))
    print('------------')

    with open('models/%s/args.txt' % args.name, 'w') as f:
        for arg in vars(args):
            print('%s: %s' % (arg, getattr(args, arg)), file=f)

    joblib.dump(args, 'models/%s/args.pkl' % args.name)

    # create model
    # input_layer = Input(shape=(28,28,1))
    # input_image_ = Lambda(lambda x: K.repeat_elements(K.expand_dims(x, 3), 3, 3))(input_layer)
    # # model = ResNext(img_dim, depth=depth, cardinality=cardinality, width=width, weights=None, classes=nb_classes)
    # se_resnext= SEResNeXt()
    # model1=se_resnext.build_model(inputs=input_layer,num_classes=10,include_top=False) #wrn
    # model1 = Dense(10)(model1)
    # # model1.load_weights("",by_name=True)
    # # model1 = NASNetMobile(input_tensor=input_image_, include_top=False, pooling='avg', weights="./model/nasnet.hdf5")
    #
    #
    # model2 = create_shakeshake_cifar(n_classes=10,include_top=False,x_in=input_layer)
    # model2 = Dense(10)(model2)
    #
    input = Input(shape=(56, 56, 1))
    input_image_ = Lambda(lambda x: K.repeat_elements(x, 3, 3))(input)
    print(input_image_.shape)
    model = EfficientNetB5(input_shape=(56, 56, 3),
                           input_tensor=input_image_,
                           classes=10,
                           include_top=False,
                           weights='imagenet')
    x = keras.layers.GlobalAveragePooling2D()(model.output)

    x = keras.layers.Dropout(0.5)(x)

    x = keras.layers.Dense(10)(x)
    x = keras.layers.Activation('softmax')(x)
    model = keras.models.Model(input, x)
    # model = WideResNet(args.depth, args.width, num_classes=10)
    # model3 = Dense(10)(model3)
    # t = keras.layers.Concatenate(axis=1)([model1, model2])
    # 第一个全连接层
    # top_model = Dense(units=128, activation="relu")(t)
    # top_model = Dropout(rate=0.5)(top_model)
    # top_model = Dense(units=10, activation="softmax")(top_model)
    #
    # model = Model(inputs=input_layer, outputs=top_model)

    model.summary()

    # model = WideResNet(args.depth, args.width, num_classes=10)
    model.compile(
        # loss=[focal_loss(alpha=.25, gamma=2)],
        loss=keras.losses.mean_absolute_error,
        # loss='categorical_crossentropy',
        optimizer=SGD(lr=0.001, momentum=0.9),
        #   optimizer=Adam(1e-3),
        # optimizer=RectifiedAdam(1e-3),
        metrics=[keras.metrics.mean_absolute_error]
        # metrics = ['accuracy']
    )

    # (x_train, y_train), (x_test, y_test) = cifar10.load_data()

    mnist = read_data_sets(
        './data/fashion',
        reshape=False,
        validation_size=0,
        source_url='http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'
    )
    x_train = mnist.train.images
    y_train = mnist.train.labels
    x_test = mnist.test.images
    y_test = mnist.test.labels
    height, width = 56, 56
    x_train = x_train.reshape((-1, 28, 28))
    x_train = np.array([
        misc.imresize(x, (height, width)).astype(float)
        for x in tqdm(iter(x_train))
    ]) / 255.
    x_train = x_train.reshape((-1, height, width, 1))
    x_test = x_test.reshape((-1, 28, 28))
    x_test = np.array([
        misc.imresize(x, (height, width)).astype(float)
        for x in tqdm(iter(x_test))
    ]) / 255.
    x_test = x_test.reshape((-1, height, width, 1))
    x_train = np.uint8(x_train * 255)
    x_test = np.uint8(x_test * 255)
    datagen = Cifar10ImageDataGenerator(args)

    x_test = datagen.standardize(x_test)

    y_train = keras.utils.to_categorical(y_train, 10)
    y_test = keras.utils.to_categorical(y_test, 10)
    weights_file = "models/merge.h5"
    model.load_weights(weights_file)
    lr_reducer = ReduceLROnPlateau(
        monitor='val_loss',
        factor=0.9,  # 当标准评估停止提升时,降低学习速率。
        cooldown=0,
        patience=20,
        min_lr=1e-8)

    model_checkpoint = ModelCheckpoint(weights_file,
                                       monitor="val_acc",
                                       save_best_only=True,
                                       mode='auto')

    callbacks = [
        # ModelCheckpoint('models/%s/model.hdf5'%args.name, verbose=1, save_best_only=True),
        lr_reducer,
        model_checkpoint,
        CSVLogger('models/%s/log.csv' % args.name),
        CosineAnnealingScheduler(T_max=args.epochs, eta_max=0.05, eta_min=4e-4)
    ]

    model.fit_generator(datagen.flow(x_train,
                                     y_train,
                                     batch_size=args.batch_size),
                        steps_per_epoch=len(x_train) // args.batch_size,
                        validation_data=(x_test, y_test),
                        epochs=args.epochs,
                        verbose=1,
                        callbacks=callbacks)

    scores = model.evaluate(x_test, y_test, verbose=1)
    print('Test loss:', scores[0])
    print('Test accuracy:', scores[1])

    os.system('shutdown -s -f -t 59')
    def model_confirm(self, choosed_model):
        if choosed_model == 'VGG16':
            model = MODEL(self.config).VGG16()
        elif choosed_model == 'VGG19':
            model = MODEL(self.config).VGG19()
        elif choosed_model == 'AlexNet':
            model = MODEL(self.config).AlexNet()
        elif choosed_model == 'LeNet':
            model = MODEL(self.config).LeNet()
        elif choosed_model == 'ZF_Net':
            model = MODEL(self.config).ZF_Net()
        elif choosed_model == 'ResNet18':
            model = ResnetBuilder().build_resnet18(self.config)
        elif choosed_model == 'ResNet34':
            model = ResnetBuilder().build_resnet34(self.config)
        elif choosed_model == 'ResNet101':
            model = ResnetBuilder().build_resnet101(self.config)
        elif choosed_model == 'ResNet152':
            model = ResnetBuilder().build_resnet152(self.config)
        elif choosed_model == 'mnist_net':
            model = MODEL(self.config).mnist_net()
        elif choosed_model == 'TSL16':
            model = MODEL(self.config).TSL16()
        elif choosed_model == 'ResNet50':
            model = keras.applications.ResNet50(include_top=True,
                                                weights=None,
                                                input_tensor=None,
                                                input_shape=(self.normal_size,
                                                             self.normal_size,
                                                             self.channles),
                                                pooling='max',
                                                classes=self.classNumber)
        elif choosed_model == 'InceptionV3':
            model = keras.applications.InceptionV3(
                include_top=True,
                weights=None,
                input_tensor=None,
                input_shape=(self.normal_size, self.normal_size,
                             self.channles),
                pooling='max',
                classes=self.classNumber)

        elif choosed_model == 'Xception':
            model = keras.applications.Xception(include_top=True,
                                                weights=None,
                                                input_tensor=None,
                                                input_shape=(self.normal_size,
                                                             self.normal_size,
                                                             self.channles),
                                                pooling='max',
                                                classes=self.classNumber)
        elif choosed_model == 'MobileNet':
            model = keras.applications.MobileNet(include_top=True,
                                                 weights=None,
                                                 input_tensor=None,
                                                 input_shape=(self.normal_size,
                                                              self.normal_size,
                                                              self.channles),
                                                 pooling='max',
                                                 classes=self.classNumber)
        elif choosed_model == 'InceptionResNetV2':
            model = keras.applications.InceptionResNetV2(
                include_top=True,
                weights=None,
                input_tensor=None,
                input_shape=(self.normal_size, self.normal_size,
                             self.channles),
                pooling='max',
                classes=self.classNumber)
        elif choosed_model == 'SEResNetXt':
            model = SEResNetXt(self.config).model

        elif choosed_model == 'DenseNet':
            depth = 40
            nb_dense_block = 3
            growth_rate = 12
            nb_filter = 12
            bottleneck = False
            reduction = 0.0
            dropout_rate = 0.0

            img_dim = (self.channles, self.normal_size
                       ) if K.image_data_format == 'channels_last' else (
                           self.normal_size, self.normal_size, self.channles)

            model = densenet.DenseNet(img_dim,
                                      classNumber=self.classNumber,
                                      depth=depth,
                                      nb_dense_block=nb_dense_block,
                                      growth_rate=growth_rate,
                                      nb_filter=nb_filter,
                                      dropout_rate=dropout_rate,
                                      bottleneck=bottleneck,
                                      reduction=reduction,
                                      weights=None)

        elif choosed_model == 'SENet':
            model = sm.Unet('senet154',
                            input_shape=(self.normal_size, self.normal_size,
                                         self.channles),
                            classes=4,
                            activation='softmax',
                            encoder_weights=None)

            #model.summary()

        elif choosed_model == 'EfficientNetB5':
            model = EfficientNetB5(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'EfficientNetB4':
            model = EfficientNetB4(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'EfficientNetB3':
            model = EfficientNetB3(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'EfficientNetB2':
            model = EfficientNetB2(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'EfficientNetB1':
            model = EfficientNetB1(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'EfficientNetB0':
            model = EfficientNetB0(input_shape=(self.normal_size,
                                                self.normal_size,
                                                self.channles),
                                   classes=4,
                                   weights=None)

        elif choosed_model == 'MobileNetV3_Large':
            model = MobileNetV3_Large(shape=(self.normal_size,
                                             self.normal_size, self.channles),
                                      n_class=4).build()

        elif choosed_model == 'MobileNetV3_Small':
            model = MobileNetV3_Small(shape=(self.normal_size,
                                             self.normal_size, self.channles),
                                      n_class=4).build()

        elif choosed_model == 'NASNetLarge':
            model = NASNetLarge(input_shape=(self.normal_size,
                                             self.normal_size, self.channles),
                                weights=None,
                                use_auxiliary_branch=False,
                                classes=4)

        elif choosed_model == 'NASNetMobile':
            model = NASNetMobile(input_shape=(self.normal_size,
                                              self.normal_size, self.channles),
                                 weights=None,
                                 use_auxiliary_branch=False,
                                 classes=4)

        elif choosed_model == 'NASNetMiddle':
            model = NASNetMiddle(input_shape=(self.normal_size,
                                              self.normal_size, self.channles),
                                 weights=None,
                                 use_auxiliary_branch=False,
                                 classes=4)

        elif choosed_model == 'ShuffleNet':
            model = ShuffleNet(input_shape=(self.normal_size, self.normal_size,
                                            self.channles),
                               classes=4)

        elif choosed_model == 'ShuffleNetV2':
            model = ShuffleNetV2(input_shape=(self.normal_size,
                                              self.normal_size, self.channles),
                                 classes=4)

        return model
Example #7
0
adam = keras.optimizers.Adam(lr=0.0001)

effb0_model.compile(optimizer=adam,
                    loss='binary_crossentropy',
                    metrics=['binary_accuracy'])

effb0_model.load_weights('ml_models/efficient0_2_model.h5')

eff_prob = effb0_model.predict(img)
#####################################################################################################################################

#####################################################################################################################################
from keras_efficientnets import EfficientNetB5
effb5_model = EfficientNetB5(include_top=False,
                             weights='ml_models/efficientnet-b5_notop.h5',
                             pooling='avg',
                             input_shape=(96, 96, 3))
x = effb5_model.output

x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.25)(x)

x = Dense(16)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.25)(x)

x = Dense(8)(x)
x = BatchNormalization()(x)
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D,BatchNormalization
from keras import backend as K
from PIL import Image
img_width, img_height = 224, 224

"""
if K.image_data_format() == 'channels_first':
    input_shape = (1, img_width, img_height)
else:
    input_shape = (img_width, img_height, 1)
    
"""
from keras_efficientnets import EfficientNetB5

model = EfficientNetB5(include_top=False, weights='imagenet',pooling='avg',input_shape=(224,224,3))
#model = keras.applications.nasnet.NASNetLarge(include_top=False, weights='model_weights/NASNet-large-no-top.h5',input_shape=input_shape,pooling='avg')

#model = keras.applications.xception.Xception(include_top=False, weights='imagenet',pooling='avg',input_shape=(299,299,3))

for layer in model.layers[0:-1]:
    layer.trainable = True

x = model.output



x = Dense(64)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)          
x = Dropout(0.3)(x)