Example #1
0
def classifier(base_layers,
               input_rois,
               num_rois,
               nb_classes=21,
               trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions,
                                  num_rois)([base_layers, input_rois])
    out = classifier_layers(out_roi_pool,
                            input_shape=input_shape,
                            trainable=True)

    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes,
                                      activation='softmax',
                                      kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1),
                                     activation='linear',
                                     kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr]
Example #2
0
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False, alpha=1.0, depth_mult=1):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround
    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)


    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
    
    out = classifier_layers(out_roi_pool, trainable=True, alpha=1.0, depth_multiplier=1)   
    out = TimeDistributed(AveragePooling2D(name='Global_average_Pooling_classifier_layer'), name='TimeDistributed_AVG')(out)
    
    
    
    out = TimeDistributed(Flatten(name='flatten'), name='TimeDistributed_flatten')(out)
    #out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    #out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero', name='dense_class'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1), activation='linear', kernel_initializer='zero', name='dense_regr'),
                               name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr]
Example #3
0
def classifier(base_layers,
               input_rois,
               num_rois,
               nb_classes=21,
               trainable=False):

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)

    out_roi_pool = RoiPoolingConv(pooling_regions,
                                  num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes,
                                      activation='softmax',
                                      kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)

    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1),
                                     activation='linear',
                                     kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr]
Example #4
0
def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):
    '''
    Construct a ROI classifier from base layers and input roi. Only ROI classifier uses
    the TimeDistributed Layer. 
    
    # Args
        | base_layers: base layers
        | input_rois: a placeholder for input rois  
        | num_rois: the number of ROI to be processed each time (? to be verified)
        | num_classes: number of classes including background
        
    # Return
        | out_class: (num_rois, nb_classes) softmax probailities
        | out_regr: (num_rois, 4*(nb_classes-1)) regression result
    '''
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    # The pooling_region defines the fixed feature map used in ROI pooling layer

#    if K.backend() == 'tensorflow':
#        pooling_regions = 7
#        input_shape = (num_rois, 7, 7, 512)
#    elif K.backend() == 'theano':
#        pooling_regions = 7
#        input_shape = (num_rois, 512, 7, 7)
    pooling_regions = 7
    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'), name='TimeDistributed_flatten')(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)
    # https://keras.io/layers/core/#dense
    # Input nD tensor with shape: (batch_size, ..., input_dim)
    # Output has shape (batch_size, ..., units).
    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1), activation='linear', kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr]
Example #5
0
def classifier(base_layers,
               input_rois,
               num_rois,
               nb_classes=11,
               trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)  # return x的通道数
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 512, 7, 7)

    # RoiPoolingConv:返回的shape为(1, 32, 7, 7, 512)
    # 含义是batch_size,预选框的个数,特征图宽,特征图高度,特征图深度
    out_roi_pool = RoiPoolingConv(pooling_regions,
                                  num_rois)([base_layers, input_rois])

    # TimeDistributed:输入至少为3D张量,下标为1的维度将被认为是时间维。即对以一个维度下的变量当作一个完整变量来看待。本文是32。
    # 你要实现的目的就是对32个预选宽提出的32个图片做出判断。
    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    # 4096=32*
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    # out_class的shape:(?, 32, 21);
    out_class = TimeDistributed(Dense(nb_classes,
                                      activation='softmax',
                                      kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    # out_regr的shape: (?, 32, 80)
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1),
                                     activation='linear',
                                     kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)

    # 产生num_rois个out_class和out_reg
    # 四个损失函数中的:Fast R-CNN classification和Fast R-CNN regression(proposal ->box)。
    return [out_class, out_regr]
def classifier(base_layers,
               input_rois,
               num_rois,
               nb_classes=21,
               trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)
    # RoiPoolingConv的作用是分别将每一个ROI对应的原图区域resize为指定大小(14,14),
    # 然后,把所有的resize后的矩阵在0轴上串联起来。
    # 其作用就是将尺寸不一而同的ROI都调整为相同的大小,输入给后续的层,因为后续的层有全连接层,所以需要规范输入图的大小
    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)(
        [base_layers,
         input_rois])  #shape=(1, num_rois, 14, 14, 1024) dtype=float32
    out = classifier_layers(
        out_roi_pool, input_shape=input_shape,
        trainable=True)  #9个卷积层#shape=(1, num_rois, 1, 1, 2048) dtype=float32>

    out = TimeDistributed(Flatten())(
        out)  #shape=(?, num_rois, 2048) dtype=float32

    out_class = TimeDistributed(
        Dense(nb_classes, activation='softmax', kernel_initializer='zero'),
        name='dense_class_{}'.format(nb_classes))(
            out)  #shape=(?, num_rois, nb_classes) dtype=float32
    # note: no regression target for bg class
    out_regr = TimeDistributed(
        Dense(4 * (nb_classes - 1),
              activation='linear',
              kernel_initializer='zero'),
        name='dense_regress_{}'.format(nb_classes))(
            out)  #shape=(?, num_rois, 4 * (nb_classes - 1)) dtype=float32
    return [out_class, out_regr]
Example #7
0
def classifier(base_layers,
               input_rois,
               num_rois,
               nb_classes=11,
               trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround

    if K.backend() == 'tensorflow':
        pooling_regions = 14
        input_shape = (num_rois, 14, 14, 1024)  # return x的通道数
    elif K.backend() == 'theano':
        pooling_regions = 7
        input_shape = (num_rois, 1024, 7, 7)

    # # 该层的输入为feature maps和roi的坐标信息
    out_roi_pool = RoiPoolingConv(pooling_regions,
                                  num_rois)([base_layers, input_rois])
    # 输出的是(None, num_riois, 2048)的feature map
    out = classifier_layers(out_roi_pool,
                            input_shape=input_shape,
                            trainable=True)

    # 因为是对num_rois个feature maps分别处理的,所以需要使用timedistributed进行包装
    out = TimeDistributed(Flatten())(out)

    out_class = TimeDistributed(Dense(nb_classes,
                                      activation='softmax',
                                      kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    # 我们可以使用包装器TimeDistributed包装Dense,以产生针对各个时间步信号的独立全连接
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1),
                                     activation='linear',
                                     kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)
    return [out_class, out_regr]  # 一共有num_riois个out_class和out_regr
Example #8
0
        base_layers)
    x_class = Conv2D(num_anchors, (1, 1), activation='sigmoid', kernel_initializer='uniform', name='rpn_out_class')(x)
    x_regr = Conv2D(num_anchors * 4, (1, 1), activation='linear', kernel_initializer='zero', name='rpn_out_regress')(x)

    return [x_class, x_regr, base_layers]


def classifier(base_layers, input_rois, num_rois, nb_classes=21, trainable=False):
    # compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround
    # -if K.backend() == 'tensorflow':
    if K.image_data_format == 'channels_last':
        pooling_regions = 7
        input_shape = (num_rois, 7, 7, 512)
    # -elif K.backend() == 'theano':
    elif K.image_data_format = 'channels_first':
        pooling_regions = 7
        input_shape = (num_rois, 512, 7, 7)

    out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])

    out = TimeDistributed(Flatten(name='flatten'))(out_roi_pool)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc1'))(out)
    out = TimeDistributed(Dense(4096, activation='relu', name='fc2'))(out)

    out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'),
                                name='dense_class_{}'.format(nb_classes))(out)
    # note: no regression target for bg class
    out_regr = TimeDistributed(Dense(4 * (nb_classes - 1), activation='linear', kernel_initializer='zero'),
                               name='dense_regress_{}'.format(nb_classes))(out)

    return [out_class, out_regr]