Example #1
0
def test_backbone(backbone, alpha):
    # ignore warnings in this test
    warnings.simplefilter('ignore')

    num_classes = 10

    inputs = np.zeros((1, 1024, 363, 3), dtype=np.float32)
    targets = [
        np.zeros((1, 68760, 5), dtype=np.float32),
        np.zeros((1, 68760, num_classes + 1))
    ]

    inp = keras.layers.Input(inputs[0].shape)

    mobilenet_backbone = MobileNetBackbone(
        backbone='{}_{}'.format(backbone, format(alpha)))
    training_model = mobilenet_backbone.retinanet(num_classes=num_classes,
                                                  inputs=inp)
    training_model.summary()

    # compile model
    training_model.compile(loss={
        'regression': losses.smooth_l1(),
        'classification': losses.focal()
    },
                           optimizer=keras.optimizers.Adam(lr=1e-5,
                                                           clipnorm=0.001))

    training_model.fit(inputs, targets, batch_size=1)
def test_backbone(backbone, alpha):
    # ignore warnings in this test
    warnings.simplefilter('ignore')

    num_classes = 10

    inputs = np.zeros((1, 1024, 363, 3), dtype=np.float32)
    targets = [np.zeros((1, 68760, 5), dtype=np.float32), np.zeros((1, 68760, num_classes + 1))]

    inp = keras.layers.Input(inputs[0].shape)

    mobilenet_backbone = MobileNetBackbone(backbone='{}_{}'.format(backbone, format(alpha)))
    training_model = mobilenet_backbone.retinanet(num_classes=num_classes, inputs=inp)
    training_model.summary()

    # compile model
    training_model.compile(
        loss={
            'regression': losses.smooth_l1(),
            'classification': losses.focal()
        },
        optimizer=keras.optimizers.adam(lr=1e-5, clipnorm=0.001))

    training_model.fit(inputs, targets, batch_size=1)